our evolving understanding of the mechanisms by which these symptoms develop, including inflammation (8,9), autoimmune phenomena (10), hormonal influences (11), and neurotoxic effects of specific agents (12,13). However, although research into mechanisms of cognitive dysfunction related to cancer therapy is clearly important and needed, a full understanding of the biology of cancer-related symptoms is not necessary for effective interventions to be employed.

First, identification and treatment of underlying medical and psychological conditions, including endocrine dysfunction, anemia, sleep disturbance, diabetes, and depression, is necessary but sometimes overlooked in the battle against cancer. Second, there are a number of behavioral strategies that are often helpful, including relaxation training to focus attention and reduce stress, exercise, cognitive rehabilitation, and compensatory strategies such as using personal electronic mobile devices or daily planners. Lifestyle changes, including alterations of the work environment, reasonable accommodations in the scholastic environment, and vocational retraining are often very effective. However, mental exercises that are designed and marketed to improve cognitive function, which perhaps provide mental stimulation in general and likely result in improved performance on the specific task, have not been definitively proven to generalize to other aspects of the person’s ability to function. Third, pharmacologic treatments, particularly psychostimulants, have been shown to be useful for people with attentional problems and fatigue, if not medically contraindicated. Research into other pharmacologic strategies, including agents that attenuate inflammation or reduce oxidative stress, is ongoing. However, it is important that such agents do not undermine the primary antineoplastic therapy and “feed” the tumor.

A large number of cancer survivors suffer from neurocognitive, emotional, and behavioral symptoms that interfere with their academic, vocational, and social pursuits. These impairments, as demonstrated in the Ganz et al. study (1), commonly involve problems with memory, multitasking, speed of cognitive processing, and the need to use more mental effort to perform routine tasks (all of which also contribute to fatigue and depression). However, many cancer survivors can enjoy improved levels of functioning if properly diagnosed and provided with the right support. Symptom assessment coupled with effective and proactive intervention strategies are a critical component throughout and after cancer treatment.

References

Note
The author has no conflicts of interest.

Affiliation of author: (CAM) Department of Neuro-oncology, MD Anderson Cancer Center (retired).

DOI:10.1093/jnci/djt114
©The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

Can We Identify Predictive Biomarkers for Antiangiogenic Therapy of Cancer Using Mathematical Modeling?
Dan G. Duda, Lance L. Munn, Rakesh K. Jain

Correspondence to: Rakesh K. Jain, PhD, Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom St, Cox 734, Boston, MA 02114 (e-mail: jain@steele.mgh.harvard.edu).

Angiogenesis (the term referring generically to new blood vessel formation) is a hallmark of all solid tumors (1), and vascular endothelial growth factor (VEGF) is the most prevalent and potent angiogenic growth factor in these tumors (2,3). For this reason, there have been
intense efforts to develop therapies that target the VEGF pathway. Currently, there are nine antiangiogenic drugs approved by the US Food and Drug Administration and one pending approval (Table 1) (4). These agents are antibodies that target VEGF itself (bevacizumab and aflibercept) or its receptor VEGFR2 (ramucirumab), or are tyrosine kinase inhibitors that interfere with VEGFR2 signaling as well as other receptor and cellular kinases. Introduction of these new drugs over the last decade has established antiangiogenic therapy as a novel therapeutic modality, but their implementation has raised several important questions. Why do they work in some cancers and not others? Is the mechanism of action similar when targeting the ligand versus the receptors, or when using specific versus multitargeted drugs? Can any of them completely block the VEGF pathway? What mediates the inevitable escape from therapy? Can we find biomarkers to identify patients who will benefit from these agents or pathways that must be targeted when tumors become refractory to a given antiangiogenic agent?

Most cancer cell–targeted drugs target identifiable oncogenic pathways known to drive tumorigenesis and have corresponding biomarkers related to those pathways that help guide treatment. However, the theoretical advantage of antiangiogenic therapy over these cancer cell–targeted treatments is that it can be applied more broadly, irrespective of the genetic makeup of each cancer. Unfortunately, unlike in the development of anticancer targeted agents—where target is often an identifiable oncogenic signal known to drive tumorigenesis—the clinical development of antiangiogenic agents has not been biomarker-based. This, coupled with the fact that the exact mechanism(s) of benefit of anti-VEGF drugs remain unclear, has resulted in a complete lack of biomarker-based selection of patients for antiangiogenic therapy with anti-VEGF drugs (5,6). Clearly, the approach of indiscriminately using antiangiogenic drugs in all patients with an approved indication limits their overall efficacy, as some patients show inherent resistance.

This raises important concerns for the use of antiangiogenic therapy and makes the identification of mechanistic biomarkers of response a priority. Such a biomarker would allow selection of patients who would experience survival benefits in excess of the 2–5 months seen in the overall population with antiangiogenic therapies. This would likely equal or even surpass the benefits of cancer cell–targeted drugs, which are given in selected populations (eg, patients with

Table 1. Overview of successful phase III trials of antiangiogenic agents*

<table>
<thead>
<tr>
<th>Drug</th>
<th>Indication</th>
<th>Improvement in RR (%)</th>
<th>Improvement in PFS (months)</th>
<th>Improvement in OS (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab</td>
<td>Metastatic colorectal cancer (with chemotherapy)</td>
<td>10</td>
<td>4.4</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>Metastatic non-squamous NSCLC (with chemotherapy)</td>
<td>10.3–14.0</td>
<td>0.4–0.6</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Metastatic breast cancer (with chemotherapy)</td>
<td>15.7</td>
<td>5.9</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Recurrent GBM (monotherapy)</td>
<td>Currently only phase II data reported</td>
<td>18</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>Metastatic RCC (with IFN-α)</td>
<td>12.4</td>
<td>3.3</td>
<td>NS</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>Metastatic RCC</td>
<td>35</td>
<td>6.0</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>GIST</td>
<td>6.8</td>
<td>4.5</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>PNET</td>
<td>9.3</td>
<td>4.8</td>
<td>?</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>Metastatic RCC</td>
<td>8</td>
<td>2.7</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Unresectable HCC</td>
<td>1</td>
<td>NS</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>Unresectable HCC</td>
<td>2</td>
<td>1.4</td>
<td>2.3</td>
</tr>
<tr>
<td>Pazopanib</td>
<td>Metastatic RCC</td>
<td>27</td>
<td>5.0</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Advanced soft tissue sarcoma</td>
<td>6.0</td>
<td>3.0</td>
<td>NS</td>
</tr>
<tr>
<td>Vandetanib</td>
<td>Advanced medullary thyroid cancer</td>
<td>43</td>
<td>6.2</td>
<td>N/A</td>
</tr>
<tr>
<td>Axitinib</td>
<td>Advanced RCC</td>
<td>10</td>
<td>2.0</td>
<td>N/A</td>
</tr>
<tr>
<td>Regorafenib</td>
<td>Chemo-refractory metastatic colorectal cancer</td>
<td>0.6</td>
<td>0.2</td>
<td>1.4</td>
</tr>
<tr>
<td>Aflibercept</td>
<td>Chemo-refractory metastatic colorectal cancer</td>
<td>8.7</td>
<td>2.2</td>
<td>1.4</td>
</tr>
<tr>
<td>Cabozantinib</td>
<td>Advanced medullary thyroid cancer</td>
<td>25</td>
<td>7.2</td>
<td>NS</td>
</tr>
<tr>
<td>Ramucirumab</td>
<td>Metastatic gastric and gastroesophageal junction cancers†</td>
<td>0.8</td>
<td>0.8</td>
<td>1.4</td>
</tr>
</tbody>
</table>

* GBM = glioblastoma; GIST = gastrointestinal stromal tumor; HCC = hepatocellular carcinoma; IFN-α = interferon alpha; NSCLC = non–small cell lung cancer; OS = overall survival; PFS = progression-free survival; PNET = pancreatic neuroendocrine tumor; RCC = renal cell carcinoma. Source: Updated from Jain, 2013 (4).
† Not currently FDA approved.
prostate, pancreatic, brain, or breast cancer). Finally, a predictive biomarker would allow exclusion of patients who do not benefit from antiangiogenic therapy and spare them the toxicities and cost of these drugs.

The importance of these issues has stimulated active research in these areas, producing hypothesis-generating results that could potentially impact the treatment outcome. In an article in this issue of the Journal, Finley and Popel (7) use a computational model to address this problem. They model VEGF kinetics in the relevant physiologic compartments to investigate the distribution in the body of two major soluble VEGF isoforms (VEGF_{121} and VEGF_{165}). The model predicts changes in VEGF concentrations in each compartment after intravenous injection of a VEGF blocker. One interesting conclusion is that the concentration of free VEGF is higher in the tumor interstitium than the circulating plasma and is predominantly in the form of VEGF_{121}. The model also predicts that tumor VEGF levels can either increase or decrease after anti-VEGF treatment depending on the tumor microenvironment. Collectively, these intriguing results suggest that the rate of VEGF secretion by tumor cells is the major determinant of response and could serve as a predictive biomarker for anti-VEGF drugs.

Limited clinical data lend support to this model. VEGF expression level has been the natural candidate as a biomarker for anti-VEGF treatment depending on the tumor microenvironment. Indeed, we found in five single-arm phase II studies that cancer patients with high levels of circulating sVEGFR1 had a poor outcome after anti-VEGF therapies with antibodies as well as tyrosine kinase inhibitors (18–23). In some of these studies we found that these patients also experienced fewer side effects, further supporting the notion that high sVEGFR1 levels lower biological activity of anti-VEGF agents irrespective of their mode of action (18,21,23). Moreover, specific single-nucleotide polymorphisms in the FLTI gene that are associated with higher VEGF1 expression are also associated with poor outcomes in phase III studies of bevacizumab (24). It is unclear if the predictions from the currently available computational models support the use of sVEGFR1 or ratio of sVEGFR1 to VEGF as a biomarker.

In summary, the mathematical model of Finley and Popel (7) is a step forward in our understanding of the potential roles of different VEGF isoforms in the tumor and in blood circulation. It also raises many exciting questions about potential biomarkers for anti-VEGF therapies, and emphasizes once again the need for prospective clinical studies to specifically address them.

Resistance to anti-VEGF therapies in cancer (22). Indeed, we found in five single-arm phase II studies that cancer patients with high levels of circulating sVEGFR1 had a poor outcome after anti-VEGF therapies with antibodies as well as tyrosine kinase inhibitors (18–23). In some of these studies we found that these patients also experienced fewer side effects, further supporting the notion that high sVEGFR1 levels lower biological activity of anti-VEGF agents irrespective of their mode of action (18,21,23). Moreover, specific single-nucleotide polymorphisms in the FLTI gene that are associated with higher VEGF1 expression are also associated with poor outcomes in phase III studies of bevacizumab (24). It is unclear if the predictions from the currently available computational models support the use of sVEGFR1 or ratio of sVEGFR1 to VEGF as a biomarker.

In summary, the mathematical model of Finley and Popel (7) is a step forward in our understanding of the potential roles of different VEGF isoforms in the tumor and in blood circulation. It also raises many exciting questions about potential biomarkers for anti-VEGF therapies, and emphasizes once again the need for prospective clinical studies to specifically address them.

References

Funding

NIH grants P01-CA080124 (to RKJ, DGD, LLM), R01-CA115767, R01-CA085140, and R01-CA126642 (RKJ), R21-CA139168 and R01-CA159258 (to DGD), R01-CA149285 (to LLM), and Federal Share/NCI Proton Beam Program Income Grants (to RKJ, DGD, LLM); Department of Defense Innovator Award W81XWH-10-1-0016 (to RKJ); American Cancer Society Grant RSG-11-073-01-TBG (to DGD); and National Foundation for Cancer Research Grant (to RKJ). RKJ received research funding from Roche and MedImmune.

Affiliations of authors: Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (DGD, LLM, RKJ).