Characterization of a carbapenem-resistant *Escherichia coli* from dairy cattle harbouring *bla*<sub>NDM-1</sub> in an IncC plasmid

Maitane Tello 1, Beatriz Oporto 1, José Luis Lavín 1, 2, Medelin Ocejo 1, 1 and Ana Hurtado 1, 1*

1Animal Health Department, NEIKER—Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160 Derio, Bizkaia, Spain; 2Applied Mathematics Department, Bioinformatics Unit, NEIKER—Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA) Bizkaia Science and Technology Park 812L, 48160 Derio, Bizkaia, Spain

*Corresponding author. E-mail: ahurtado@neiker.eus

NDM-producing Enterobacteriaceae have increased worldwide in human infections, but are still rare in food-producing animals. The only NDM type described in cattle so far was NDM-5, always carried by IncX plasmids. To the best of our knowledge, this study represents the first description of a *bla*<sub>NDM-1</sub> gene in *Escherichia coli* isolated from cattle, carried in an IncC plasmid.

In July 2020, *E. coli* isolates were recovered on ChromID® Carba Smart plates (bioMérieux) from rectal faeces collected from dairy calves in the Basque Country (Spain) within a longitudinal study conducted to monitor antimicrobial resistance (AMR) in commensal *E. coli*. MICs determined by broth microdilution (Thermo Scientific™ Sensititre™ AST plates EUVE1C and EUVE2C) and interpreted using epidemiological cut-off values as developed by EUCAST (http://www.eucast.org) showed microbiological resistance to all β-lactams tested, including temocillin and carbapenems, and sulfamethoxazole and trimethoprim (Table S1, available as Supplementary data at JAC Online). Genomic DNA from *E. coli* strain EC1110 was extracted using a NZY Microbial gDNA Isolation Kit (NZYTech) and Illumina WGS was performed as previously described and further complemented by Oxford Nanopore–ONT sequencing (MinION Mk1c, SQK-LSK109 library and R9.4.1 flow-cell). Base-calling of ONT reads on Guppy (HAC mode) was followed by adapter removal with Porechop and discharge of shorter reads (<1000 bp) by Filtlong retaining only the best 1000 Mbp. A hybrid assembly (Illumina–ONT) was generated with Unicycler and analysed as described elsewhere. Details on bioinformatic tools are available in Table S2.

The Illumina-ONT assembly produced two contigs, i.e. the chromosome (4 816 563 bp) and an IncC plasmid (145 165 bp) that contained the *bla*<sub>NDM-1</sub> gene and nine other AMR genes (GenBank JADWPFO000000000, BioProject PRJNA680938 and BioSample SAMN16926619 (Figure 1)). *E. coli* EC1110 belonged to serogroup O74; H23 and was assigned to a novel MLST type (ST-11626; cgST-151275). It carried a fimH60 fimbrial adhesion allele and harboured virulence-associated genes related to adhesion (CFA/I and Type 1 fimbriae), iron uptake (ent and fep) and invasion of brain endothelial cells (ompA, iBeB and iBeC). The IncC plasmid, named pEC1110_NDM-1, was assigned to pST-3 and included genes for the initiation of replication (repA), conjugative transfer (tra) and plasmid partitioning (stb and par) (Figure 1a). AMR genes were located in accessory modules of AMR islands, ARI-A and ARI-B. The *bla*<sub>NDM-1</sub> gene was in ARI-A flanked upstream by ISAba125 and downstream by the bleomycin resistance gene *bemA*, followed by a truncated Δ*bla*<sub>NDM-1</sub>-gene (Figure 1b). Other AMR genes in ARI-A were the sulphonamide-resistance sul1 gene (two copies), the trimethoprim-resistance *dfrA12* gene, genes that confer resistance to amikacin *(aph(3’)-VI)* and streptomycin *(aadA2)*, the qaceA1 gene (quaternary ammonium compound resistance) and a mercury-resistance operon (merDACPTr). The sulphonamide-resistance sul2 was present in ARI-B, downstream of IS911 (Figure 1b).

A BLAST search showed that pEC1110_NDM-1 was related to IncC *bla*<sub>NDM-1</sub>-harbouring plasmids in Providencia stuartii (pMR0211; 94% coverage, 99.9% identity), *Salmonella enterica* subsp. *enterica* serovar *Cornwallis* (pSE12-01738–2; 92% coverage, 99.9% identity) and *E. coli* (pM214_AC2; 88% coverage, 99.9% identity). Moreover, it was also similar to IncC plasmids in Enterobacteriaceae that do not carry *bla*<sub>NDM-1</sub> genes, isolated from food-producing animals, like *S. enterica* subsp. *enterica* serovar Newport p34530-1 isolated from cattle in the USA (92% coverage, 99.9% identity) and *E. coli* (pEC3-1/2a from a chicken in China (91% coverage, 99.9% identity), or from human cases, like pRMH760 from *Klebsiella pneumoniae* (89% coverage, 99.8% identity), the first IncC plasmid described in detail (Figure S1).

The genetic environment of *bla*<sub>NDM-1</sub> in pEC1110_NDM-1 had features present in other *bla*<sub>NDM-1</sub>-harbouring strains. The ISAba125-*bla*<sub>NDM-1</sub>-*bemA*-trpF-Δ*bla*<sub>NDM-1</sub>-*ampR* region was conserved in the partial sequence of the plasmid of *E. coli* DFR22 (JF922606; 4036 bp), the first description of an NDM-1 carbapenemase-producing *E. coli* in Spain. Homology with the PG1–PmPEL genomic island of *Proteus mirabilis* was nearly 100% in the segment that extended from the ISCR1 upstream of *bla*<sub>NDM-1</sub> to the *ampR* gene (Figure S2). Insertion of *bla*<sub>NDM-1</sub> from a circular molecule mediated by ISCR1 was proposed and ISCR1 was also associated with acquisition of the *bla*<sub>NDM-1</sub>-*ampR* gene region as part of a class 1 integron. On the other hand, the gene synteny of ARI-A in pEC1110_NDM-1 was highly conserved compared with the same region in p34530-1 (Figure S2). Despite lacking the 9639 kb fragment from the ISCR1 element to the *ampR* gene where the...
The bla<sub>NDM-1</sub> gene is located in pEC1110_NDM-1, both plasmids shared a sul1-type class 1 integron structure (intI1-dfrA12-gcuF-aadA2-qacEΔ1-sul1), suggesting a common origin. Whereas only sul2 was present in pEC1110_NDM-1 ARI-B, other IncC plasmids usually contain several additional AMR genes, such as floR, strA, strB and tet(A). Different-sized deletions reported in ARI-B are considered potentially useful evolutionary and epidemiological markers.

In conclusion, to the best of our knowledge, this is the first description of a bla<sub>NDM-1</sub>-harbouring plasmid in an MDR E. coli isolated from cattle. This IncC plasmid also carried genes for aminoglycoside,
The occurrence of NDM-1 plasmid-mediated carbapenem resistance in E. coli in cattle is worrisome since it might pose a risk for resistance spread in food-producing animals. However, this was the only detection after monitoring the herd for over 2 years, suggesting a sporadic event.

Acknowledgements
We express our thanks to the veterinary clinician who carried out the samplings and to the farmer for their collaboration in this study.

Funding
This work was supported by the Basque Government: the Department of Economic Development, Sustainability and Environment, and the Department of Health (grant number 2019111038). M.T. is the recipient of a predoctoral fellowship from the Basque Government (Department of Economic Development, Sustainability and Environment).

Transparency declarations
None to declare.

Supplementary data
Tables S1 and S2 and Figures S1 and S2 are available as Supplementary data at JAC Online.

References