In vitro pharmacodynamics of novel rifamycin ABI-0043 against Staphylococcus aureus

Brian T. Tsuji1,2*, Jenny C. Yang1, Alan Forrest1, Pamela A. Kelchlin1 and Patrick F. Smith1†

1Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences and The New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, State University of New York, NY 14260, USA; 2Roswell Park Cancer Institute, Departments of Pharmacy and Medicine, Buffalo, NY 14263, USA

Received 27 November 2007; returned 20 December 2007; revised 15 February 2008; accepted 16 February 2008

Objectives: ABI-0043 is a novel benzoxazinorifamycin derivative, which derives its potent bactericidal activity by the specific inhibition of bacterial RNA polymerase. We evaluated the in vitro pharmacodynamics and bactericidal activity of ABI-0043 against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA).

Methods: Using time–kill studies at a wide range of concentrations of ABI-0043, we evaluated the killing activity against four clinical isolates of S. aureus over 24 h. An integrated pharmacokinetic/pharmacodynamic area measure was applied to all cfu data and was fitted to a Hill-type mathematical model to evaluate pharmacodynamics.

Results: Bacterial killing for ABI-0043 occurred rapidly and in a concentration-dependent manner. Bactericidal activity was achieved within 4 h at ≥16× MIC against all isolates. Bacterial reductions were greatest at >64× MIC against MRSA and MSSA isolates, as a >4 log10 cfu/mL reduction was observed as early as 2 h, and sustained throughout 24 h. The pharmacodynamics of ABI-0043 was well described by a Hill-type model, with a steep sigmoidicity constant and a low EC50 against all isolates.

Conclusions: ABI-0043 displayed rapid and sustained bactericidal activity against S. aureus clinical isolates. ABI-0043 represents a promising antistaphylococcal agent to combat serious S. aureus infections. Further, pharmacokinetic, pharmacodynamic and in vivo studies are warranted to determine its ultimate place in antibacterial therapy.

Keywords: S. aureus, rifalazil, benzoxazinorifamycin

Introduction

ABI-0043 is a novel benzoxazinorifamycin that derives its potent bactericidal activity by the specific inhibition of bacterial RNA polymerase.1,2 ABI-0043 is closely related to rifalazil, also referred to as KRM-1648 or ABI-1648, but displays more potent in vitro activity against Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Propionibacterium acnes and Chlamydia spp. and has improved activity against rifampicin-resistant isolates of S. aureus and S. pyogenes.2–4 ABI-0043 has displayed efficacy against S. aureus in several animal models including the neutropenic murine thigh model,5 the mouse septicaemia model3 and a foreign body infection model.5 Limited data exist on the pharmacodynamics and bactericidal activity of ABI-0043 against clinical S. aureus isolates.

Materials and methods

Clinical isolates utilized in the study included methicillin-resistant S. aureus (MRSA; S285 and S293) and methicillin-susceptible S. aureus (MSSA; S288 and S290). All isolates were obtained from the blood of infected patients from the VA Medical Center (Buffalo, NY, USA) and were susceptible to rifampicin. S. aureus ATCC 29213 was utilized as a control.
Pharmacodynamics of ABI-0043

ABI-0043 was provided by Activbiotics Inc., Lexington, MA, USA. ABI-0043 powder was dissolved in 100% dimethyl sulphoxide (DMSO) (Sigma Chemical Company, St Louis, MO, USA) by bath sonication for 30 min to prepare a stock solution of 50 mg/mL. One volume of stock solution was added to four volumes of diluted liquid fill, resulting in a dosing solution containing ABI-0043 in 20% DMSO. The 20% DMSO diluent alone showed no antibacterial effect on S. aureus.3 Fresh working solutions of ABI-0043 were made prior to each experimental run.

MICs and minimum bactericidal concentrations (MBCs) were determined in quadruplicate using a microdilution technique in accordance with CLSI criteria.6 Mueller–Hinton broth (Difco Laboratories, Detroit, MI, USA) supplemented with calcium (25 mg/L) and magnesium (12.5 mg/L) (SMHB) was used for all broth microdilution susceptibility testing and selective time–kill experiments. The bactericidal activity of ABI-0043 was assessed by time–kill experiments. Briefly, fresh bacterial colonies from an overnight growth were added to normal saline and adjusted spectrophotometrically to provide a standard suspension. This suspension was diluted with SMHB and a standard antibiotic stock solution to achieve a starting inoculum of ~10⁶ cfu/mL. Each 10 mL culture was placed in test tubes that were incubated in a water bath at 35°C with constant shaking, and 0.1 mL samples were withdrawn for determination of bacterial counts at 0, 1, 2, 4, 8 and 24 h. The following time–kill experiments were evaluated: growth control and 0.5×, 2×, 8×, 16×, 64× and 128× MIC of ABI-0043. Colony counts were determined by plating 50 μL of each diluted sample onto Trypticase soy agar [TSA; with 5% sheep blood (Becton–Dickinson, Sparks, MD, USA)] with an automated spiral dispenser onto Trypticase soy agar [TSA; with 5% sheep blood (Becton–Dickinson, Sparks, MD, USA)] with an automated spiral dispenser onto Trypticase soy agar [TSA; with 5% sheep blood (Becton–Dickinson, Sparks, MD, USA)] with an automated spiral dispenser onto Trypticase soy agar [TSA; with 5% sheep blood (Becton–Dickinson, Sparks, MD, USA)].

All time–kill experiments were completed in duplicate to quadruplicate.

To accommodate all available data generated for each regimen tested and avoid conclusions based on cfu counts at a single time point, an integrated pharmacokinetic/pharmacodynamic area measure (log ratio area) was applied to all cfu data. For each regimen tested, the area under the cfu versus time curve from 0 to 24 h (AUCcfu₀–₂₄) was calculated via the trapezoidal rule for both the growth control (AUCcfugrowth control) and drug-containing regimens (AUCcfudrug). The AUCcfu₀–₂₄ was normalized by the AUCcfu₀–₂₄ of the growth control and the logarithm of this ratio was used to quantify the drug effect as shown in Equation (1). Additionally, the traditional approach (log ratio change) of comparing the changes in cfu/mL from 0 h (cfu₀) versus 24 h (cfu₂₄) was calculated as shown in Equation (2).

\[
\text{log ratio area} = \log_{10}(\text{AUCcfudrug}/\text{AUCcfugrowth control}) \quad (1)
\]

\[
\text{log ratio change} = \log_{10}(\text{cfu}_{24}/\text{cfu}_0) \quad (2)
\]

Using non-linear regression, a four-parameter concentration–effect Hill-type model was fitted to the effect parameter Systat (Version 11, Richmond, VA, USA) using:

\[
E = E_0 - \frac{([E_{\text{max}} \times \text{C:MIC}^H])}{(E_{\text{EC50}}^H + \text{C:MIC}^H)}
\]

Where the dependent variable \(E\) is either log ratio area or log ratio change, \(E_0\) the measured effect at zero drug concentration, \(E_{\text{max}}\) the maximal effect, \(\text{C:MIC}\) the concentration of drug divided by the MIC, \(E_{\text{EC50}}\) the C:MIC for which there is 50% maximal effect and \(H\) the Hill or sigmoidicity constant.

Results

ABI-0043 displayed MICs and MBCs against all MRSA and MSSA isolates of 0.008 mg/L. The activity of ABI-0043 is depicted in Figure 1. At concentrations of 2× and 4× MIC, ABI-0043 displayed bacteriostatic activity, with a reduction in bacterial counts at 24 h of <3 log₁₀ cfu/mL when compared with the starting inoculum against both MRSA and MSSA. Bactericidal activity was achieved within 4 h at concentrations ≥16× MIC against all isolates and was generally maintained through 8 h. However, against S293 and S288 isolates, a rebound in bacterial growth was observed at 24 h. With increasing ABI-0043 concentrations, a concentration-dependent trend towards greater bacterial killing was observed. Bacterial reductions were greatest at higher concentrations of 64× and 128× MIC against MRSA and MSSA isolates: a rapid reduction in bacterial counts >4 log₁₀ cfu/mL was observed as early as 2 h, reaching undetectable limits, which was sustained throughout 24 h. Growth on resistance plates at 4× MIC was detected at concentrations 0.5× MIC against S285, S288, S290 and S293 providing a potential explanation for the regrowth that was demonstrated in time–kill experiments. Concentrations >2× MIC suppressed the development of resistance as no growth was detected on medium containing 4× or 8× MIC of drug.

Analysis of pharmacodynamics revealed excellent model fits of the data to the Hill model (Table 1 and Figure 1). \(R^2\) values were slightly higher using the log ratio area approach, as all model fits were >0.99 versus >0.96 for the log ratio change approach. Bactericidal activity for ABI-0043 occurred in a concentration-dependent manner, as seen with the steep sigmoidicity constant (\(H\)) and low EC₅₀ against all isolates. Rapid concentration-dependent activity was most evident against MRSA S285, displaying the steepest \(H\) among all isolates and a low EC₅₀. ABI-0043 against MSSA 288 displayed the shallowest \(H\) and highest EC₅₀, partially explained by the different concentration-killing profiles, with slight regrowth and less activity at 16× MIC, versus other isolates where this exposure resulted in bactericidal activity. The maximal effect for ABI-0043 was a >7 log₁₀ reduction in cfu/mL and a reduction of >4 log₁₀ of area for ABI-0043 against all isolates.

Discussion

ABI-0043 is a representative of the most recent series of benzoxazinorifamycins, which displays potent activity against S. aureus, including rifampicin-resistant isolates. ABI-0043 is one of a number of rifamycins, such as ABI-0369, ABI-0699 and rifalazil, which also displays extremely low MICs for staphylococci.3,7,8 Although rifampicin, the oldest representative
rifamycin, possesses rapid concentration-dependent activity against staphylococci, its therapeutic use has been limited due to the rapid emergence of resistant organisms, poor tolerance and interactions with CYP3A4. Rifampicin has typically been utilized in combination with other agents in persistent, difficult-to-treat infections to overcome a high bacterial burden. However, numerous reports on the emergence of resistance, questionable efficacy and clinical failure raise uncertainty regarding its utility, especially in the treatment of aureus endocarditis where it has been used in combination with other agents. ABI-0043 possesses more potent activity than rifampicin in vitro and retains some activity against

Figure 1. Time–kill experiments evaluating the bactericidal activity of ABI-0043 versus MRSA S285 (a), MRSA S293 (b), MSSA 288 (c) and MSSA 290 (d), and the pharmacodynamic relationship between concentration and log ratio change or log ratio area for MRSA S285 (e and i), MRSA S293 (f and j), MSSA 288 (g and k) and MSSA 290 (h and l).
Pharmacodynamics of ABI-0043

Table 1. Model-fitted parameter estimates for ABI-0043 versus S. aureus clinical isolates

<table>
<thead>
<tr>
<th></th>
<th>S285</th>
<th>S293</th>
<th>S288</th>
<th>S290</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log ratio change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_0</td>
<td>3.15 (7.08)</td>
<td>3.32 (20.6)</td>
<td>3.38 (9.39)</td>
<td>3.16 (33.8)</td>
</tr>
<tr>
<td>E_{max}</td>
<td>7.27 (3.59)</td>
<td>7.74 (12.3)</td>
<td>8.59 (10.8)</td>
<td>7.40 (16.7)</td>
</tr>
<tr>
<td>H</td>
<td>1.67 (9.60)</td>
<td>1.00 (34.7)</td>
<td>0.55 (22.8)</td>
<td>1.96 (47.5)</td>
</tr>
<tr>
<td>EC$_{50}$</td>
<td>1.10 (8.46)</td>
<td>1.63 (36.0)</td>
<td>2.61 (44.7)</td>
<td>1.07 (33.8)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.998</td>
<td>0.979</td>
<td>0.994</td>
<td>0.969</td>
</tr>
<tr>
<td>Log ratio area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_0</td>
<td>0.0195 (>100)</td>
<td>0.0177 (>100)</td>
<td>1.58 (91.3)</td>
<td>0 (>100)</td>
</tr>
<tr>
<td>E_{max}</td>
<td>4.17 (2.46)</td>
<td>4.07 (5.97)</td>
<td>5.92 (50.4)</td>
<td>4.00 (1.08)</td>
</tr>
<tr>
<td>H</td>
<td>2.84 (14.7)</td>
<td>2.89 (39.0)</td>
<td>1.07 (27.8)</td>
<td>5.07 (28.0)</td>
</tr>
<tr>
<td>EC$_{50}$</td>
<td>0.669 (5.46)</td>
<td>0.656 (13.2)</td>
<td>0.256 (55.7)</td>
<td>0.717 (10.3)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.999</td>
<td>0.998</td>
<td>0.999</td>
<td>0.999</td>
</tr>
</tbody>
</table>

*a*Data are reported as maximum likelihood parameter estimates (% standard errors are shown in parentheses).

b E_0, effect at concentration to MIC ratio of 0.

c E_{max}, maximal effect, values expressed in \log_{10} cfu/mL.

d H, Hill’s constant.

e EC$_{50}$, concentration to MIC ratio for which there is 50% maximal effect.

Acknowledgements

We thank Dr Alan Lesse for the gift of strains S285, S293, S288 and S290.

A portion of these results were presented at the Forty-sixth Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, 2006. We thank David Rothstein and Christopher Murphy for critical review of this manuscript.

Funding

This study was funded by the University at Buffalo, State University of New York and the Gustavus and Louise Pfeiffer Research Foundation.

Transparency declarations

B. T. T. and A. F. have received grant support through Pfizer Pharmaceuticals, New York, NY, USA. P. F. S. is an employee of F. Hoffmann-La Roche Ltd. J. C. Y. and P. A. K.: none to declare.

References

