isolates reported an MIC\textsubscript{90} value of 0.03 mg/L for ME1036, a value two values lower than the MIC\textsubscript{90} value determined in this study against multidrug-resistant strains belonging to troublesome serotypes exhibiting higher amoxicillin than penicillin MIC. MIC\textsubscript{90} values determined for ME1036 by broth microdilution against a small number (11 strains) of penicillin-resistant \textit{S. pneumoniae} isolates in a previous study showed values similar to those in the present study.3 In conclusion, ME1036 exhibited excellent intrinsic activity against penicillin-resistant \textit{S. pneumoniae} belonging to serotypes 9V, 14, 6B and 19A, exhibiting higher amoxicillin than penicillin MIC. The spread of multidrug resistance that includes \(\beta\)-lactams (including penicillins, second- and third-generation cephalosporins and previous carbapenems) may challenge empirical hospital treatment of lower respiratory tract infections. The high intrinsic activity of ME1036 against resistant strains of \textit{S. pneumoniae} may represent an advantage when broad-spectrum activity is required.

Funding

This study was supported by an unrestricted grant from Forest Laboratories, Inc.

Transparency declarations

D. B. is an employee of Cerexa Inc. Others authors: none to declare.

References

In vitro activity of tigecycline against Gram-positive cocci: a multicentre study in Greece

1Department of Microbiology, University Hospital of Larissa, Mezourlo, 41110 Larissa, Greece; 2Department of Microbiology, School of Medicine, Rio, 26500 Patras, Greece; 3Department of Molecular Microbiology, Institute of BioMedical Research and Science, 41222 Larissa, Greece; 4Department of Microbiology, University Hospital of Alexandroupolis, Draga, 68100 Alexandroupolis, Greece; 5Department of Microbiology, University Hospital of Heraklion, Stavvakia, 71110 Heraklion, Crete, Greece; 6Department of Microbiology, University Hospital ‘AHEPA’, 54636 Thessaloniki, Greece; 7Department of Microbiology, General Hospital of Lamia, 35100 Lamia, Greece; 8Department of Microbiology, General Hospital ‘Asclepeion’, Voula, 16673 Athens, Greece; 9Department of Microbiology, General Hospital ‘Georgios Genimatas’, 11527 Athens, Greece; 10Department of Microbiology, ‘Attikon’ University Hospital, Athens, 12462 Athens, Greece; 11Department of Microbiology, General Hospital of Volos, 38222 Volos, Greece

Keywords: resistance, staphylococci, enterococci, streptococci, pneumococci

*Corresponding author. Tel: +30-2410-682517; Fax: +30-2410-682535; E-mail: petinaki@med.uth.gr or petinaki@hotmail.com

Sir,
Tigecycline, a new glycylcycline antibiotic with broad-spectrum activity against aerobic and anaerobic Gram-positive and Gram-negative bacteria, appears to be a therapeutic option for serious infections caused by multidrug-resistant organisms.1 The purpose of this study was firstly to evaluate the \textit{in vitro} activity of this drug against Gram-positive cocci in Greek hospitals and secondly to define a baseline for monitoring possible future emergence of resistance to tigecycline in our clinical settings.

From January 2006 to December 2007, a total of 10 420 Gram-positive cocci were tested for their susceptibility to tigecycline. The numbers of isolates of the various genera and species...
tested are shown in Table 1. The isolates were recovered from clinically significant specimens (blood, pus, pleural fluid etc.) in 10 Greek hospitals, located in different areas of the country (Northern, Central and Southern Greece). Each participating institution was requested to collect a minimum of 700 Gram-positive cocci, equally distributed during the study period, that were sent to the Department of Microbiology of the University Hospital of Larissa for susceptibility testing. Isolates were identified at each participating laboratory using routine methodology and were sent in transport swabs (Culturette; Becton-Dickinson Microbiology Systems, Sparks, MD, USA) to the coordinating laboratory at the University Hospital of Larissa. Upon receipt, isolates were subcultured onto 5% sheep blood agar to ensure purity, while identification was confirmed with Slidex Staph, Slidex Strep, Slidex Pneumo, ID 32 STAPH, ID 32 STREP (bioMérieux, Marcy l’Etoile, France). The clonality of the isolates was tested by PFGE, after digestion of chromosomal DNA by Smal, while the interpretation of the results was based on the criteria of Tenover et al.2

The MICs of tigecycline were first determined by an agar-dilution method; the wells were prepared in-house using fresh Mueller–Hinton agar (Difco Laboratories, Detroit, MI, USA), containing the following serial 2-fold dilutions from 0.008 to 2 mg/L.3 For testing streptococci, 5% sheep blood was also added. In addition, all MICs were re-determined by using Etest strips (AB Biodisk, Solna, Sweden). Based on the US-FDA criteria, the isolates were categorized as susceptible and resistant; a tigecycline-susceptible breakpoint of ≤0.5 mg/L was used for Staphylococcus aureus, including methicillin-resistant strains, whereas ≤0.25 mg/L was used for the interpretation of vancomycin-susceptible Enterobacter faecalis and streptococci other than Streptococcus pneumoniae. In the absence of agreed US-FDA breakpoints for coagulase-negative staphylococci (CoNS), the breakpoints for staphylococci were used, whereas for S. pneumoniae, viridans streptococci and the various enterococcal species, including vancomycin-resistant strains, the criteria for E. faecalis were used. Susceptibility testing for selected comparator agents (ampicillin, cefoxitin, erythromycin, linezolid, minocycline, oxacillin, penicillin, quinupristin/dalfopristin, teicoplanin, tetracycline and vancomycin) was done by the disc diffusion method, according to the CLSI guidelines.3 The following quality control organisms were concurrently tested: E. faecalis ATCC 29212, S. aureus ATCC 29213 and S. pneumoniae ATCC 49619.

According to the results obtained by the agar-dilution method, 99.97% of the isolates tested were considered susceptible to tigecycline. No discrepancies in the characterization of the isolates were observed between the agar-dilution method and Etest, indicating that Etest is a reliable method and could be easily applied in the clinical microbiological laboratory. During the 2 year study period, no differences in the tigecycline susceptibility results between hospitals were observed.

Table 1 summarizes the MICs at which 50% and 90% of the isolates were inhibited (MIC50 and MIC90, respectively) and the MIC distribution. No differences in the MICs were observed between the susceptible isolates and those with characterized resistance determinants (vancomycin and linezolid resistance). Among enterococci, glycopeptide-intermediate resistance for staphylococci and penicillin resistance for pneumococci). As shown in Table 1, tigecycline showed excellent activity against S. pneumoniae, Streptococcus agalactiae, Streptococcus pyogenes and viridans group streptococci. In addition, all S. aureus and coagulase-negative isolates were found to be susceptible to tigecycline, except 10, clonally unrelated, methicillin-resistant CoNS (6 Staphylococcus epidermidis and 4 Staphylococcus haemolyticus) that had MICs of 1 mg/L. Among enterococci, 10 E. faecalis and 12 Enterobacter faecium strains had MICs >0.25 mg/L. In more detail, among E. faecalis, three and seven strains had MICs of 0.512 and 1 mg/L, respectively, whereas among E. faecium, eight and four strains had MICs of 0.512 and 1 mg/L, respectively; no clonal relatedness was observed. Repetition of MICs by both the agar-dilution method and Etest revealed that these strains had reduced susceptibility to tigecycline. The mechanism of resistance is under investigation. The tigecycline non-susceptible staphylococci and enterococci of our collection also exhibited resistance to minocycline; ~8.5% of the isolates of our collection were minocycline-resistant.

Since 2007, tigecycline has been occasionally used in Greek intensive care units. Previous studies conducted in various countries have demonstrated that the agent is active against Gram-positive bacteria;4,5 our data also verify that tigecycline is

Table 1. MIC distribution, MIC50 and MIC90 against a large collection of Gram-positive cocci isolated in Greek hospitals

<table>
<thead>
<tr>
<th>Isolates (number tested)</th>
<th>MIC range (mg/L)</th>
<th>MIC50 (mg/L)</th>
<th>MIC90 (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSA (1500)</td>
<td>0.016–0.512</td>
<td>0.07</td>
<td>0.11</td>
</tr>
<tr>
<td>MSSA (2100)</td>
<td>0.064–0.256</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>CoNS-MR (1320)</td>
<td>0.064–1</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td>CoNS-MS (480)</td>
<td>0.064–0.512</td>
<td>0.10</td>
<td>0.14</td>
</tr>
<tr>
<td>E. faecalis (2280)</td>
<td>0.064–1</td>
<td>0.16</td>
<td>0.18</td>
</tr>
<tr>
<td>E. faecium (1000)</td>
<td>0.064–1</td>
<td>0.12</td>
<td>0.20</td>
</tr>
<tr>
<td>S. pneumoniae (480)</td>
<td>0.032–0.128</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>S. agalactiae (490)</td>
<td>0.032–0.128</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>S. pyogenes (600)</td>
<td>0.016–0.128</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>Viridans group streptococci (170)</td>
<td>0.032–0.128</td>
<td>0.06</td>
<td>0.07</td>
</tr>
</tbody>
</table>

MRSA, methicillin-resistant *S. aureus*; MSSA, methicillin-susceptible *S. aureus*; CoNS-MR, methicillin-resistant coagulase-negative staphylococci; CoNS-MS, methicillin-susceptible coagulase-negative staphylococci. Among *E. faecalis* tested, 118 were vancomycin-resistant and 20 linezolid-resistant; among *E. faecium* tested, 120 were vancomycin-resistant and 25 linezolid-resistant, and among *S. pneumoniae* tested, 67 were not penicillin-susceptible.
highly active against staphylococci, enterococci, pneumococci and streptococci. However, the appearance of some staphylococci and enterococci with decreased susceptibility to tigecycline must be an alarm for a future emergence of tigecycline-resistant Gram-positive bacteria in our country.6

Acknowledgements
We wish to thank M. Karanika for excellent technical support.

Funding
This study was funded by an educational/research grant from the Institute of Biomedical Research and Technology awarded to E. P.

Transparency declarations
None to declare.

References

Journal of Antimicrobial Chemotherapy
doi:10.1093/jac/dkn332
Advance Access publication 11 August 2008

Use of antibacterial consumer products containing quaternary ammonium compounds and drug resistance in the community

Robyn T. Carson1, Elaine Larson2, Stuart B. Levy3, Bonnie M. Marshall3 and Allison E. Aiello4*

1Department of Epidemiology, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY 10032, USA; 2Columbia University School of Nursing, 630 West 168th Street, New York, NY 10032, USA; 3Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA; 4Department of Epidemiology, University of Michigan School of Public Health, Center for Social Epidemiology and Population Health, 3639 SPH Tower, 109 Observatory, Ann Arbor, MI 48109-2029, USA

Keywords: antibiotic resistance, antimicrobial resistance surveillance, antibacterial products, biocide

*Corresponding author. Tel: +1-734-615-9213; Fax: +1-734-763-5706; E-mail: aielloa@umich.edu

Sir,
Quaternary ammonium compounds (QACs), such as benzalkonium chloride (BAC), are broad-spectrum antimicrobials widely used for decades to disinfect environmental surfaces in clinical and industrial settings. Reports examining the relationships between biocide use and bacterial resistance among isolates from the community setting are limited.1 We assessed the effect of antibacterial product usage in the home environment on susceptibility to BAC to determine whether there is a correlation between BAC and triclosan MICs and antibiotic resistance.

Data were collected as part of a longitudinal double-blind, randomized clinical trial conducted in a Northern Manhattan neighbourhood.2 Participant enrolment began in October 2000, with a 12 month follow-up period. At baseline, 238 households were enrolled, and 224 (94.1%) households completed the study. Households were randomly assigned to receive either antibacterial or non-antibacterial personal hygiene and household cleaning products. Households randomized to the antibacterial group received a liquid kitchen spray containing QACs (0.08% alkyl dimethyl benzyl ammonium chlorides and 0.02% alkyl benzyl ammonium chlorides), an ‘all-purpose’ surface cleaner containing QACs (2.7% alkyl benzyl ammonium chlorides) and an antimicrobial handwashing soap containing 0.2% triclosan. The non-antibacterial group received similar products lacking antimicrobial ingredients. Informed consent was obtained from each household, and The Institutional Review Board of Columbia University Medical Center approved the study.

At the beginning (baseline) and at the end of the follow-up period, a culture was obtained from a randomly selected hand of the primary caregiver in the household. The hand culture was taken before and after washing with the assigned liquid handwashing product.

The sample collection and bacterial culture methods have been described in detail previously.3 Antibiotic susceptibility was determined using MicroScan WalkAway 96 SI (Dade Behring, Deerfield, IL, USA) and classified using the recommendations from the CLSI. All Gram-negative bacteria were tested against gentamicin, imipenem and ciprofloxacin. Additional tested antibiotics that were only applicable to certain species included: amikacin and ticarcillin/clavulanate for Acinetobacter baumannii and Acinetobacter hollofii, trimethoprim/ sulfamethoxazole for Enterobacter agglomerans and Enterobacter cloacae, trimethoprim/sulfamethoxazole, pipercillin/tazobactam and ceftriaxone for Klebsiella pneumoniae, and pipercillin/tazobactam and ceftazidime for Pseudomonas fluorescens/pūtā. Antibiotic resistance was defined as resistance or intermediate resistance to at least one antimicrobial agent among all agents tested. Staphylococcal species were tested against oxacillin to ascertain methicillin resistance. The MICs for each isolate of BAC and triclosan were determined using a modified agar