general, and not from any systematic problem with the gradient methods. In the other instance, a BLPAR strain was designated ampicillin-susceptible by Etest (MIC = 1 mg/L), ampicillin- intermediate by M.I.C.E. (MIC = 2 mg/L) and ampicillin-resistant by BMD (MIC = 16 mg/L). As stated earlier, the low MICs when gradient methods were used were because of a faint growth within the inhibition zone that was difficult to detect at 24 h.

In contrast to the findings of Billal et al., all of the β-lactam MIC results for BLNAR and BLPACR strains in this study using either Etest or M.I.C.E. were within +2 doubling dilutions of the BMD method, and the gradient methods produced results comparable to each other and to the BMD method. Despite this, given the findings of both Billal et al. and Kim et al., it would be prudent for any unexpectedly high β-lactam MICs determined by the gradient methods to be repeated by the reference CLSI BMD method.

Funding

The study was funded by the School of Human Life Sciences, University of Tasmania. The Etest and M.I.C.E. strips were donated by AB Biodisk and Oxoid, respectively.

Transparency declarations

None to declare.

References

Journal of Antimicrobial Chemotherapy

doi:10.1093/jac/dkn403

Advance Access publication 28 September 2008

Comparison of killing activity of caspofungin against Candida parapsilosis, Candida orthopsilosis and Candida metapsilosis

I. Varga1, G. Sóczó2, G. Kardos2, Á. Borbély2, Zs. Szabó2, Á. Kemény-Beke3 and L. Majoros2*

Candida parapsilosis

Comparison of killing activity of caspofungin against *Candida parapsilosis*.
In the killing studies using RPMI-1640, caspofungin showed a fungistatic effect in the case of \textit{C. parapsilosis} and \textit{C. orthopsilosis} after 24 h (Table 1). However, CP85 \textit{C. orthopsilosis} was killed by 2 mg/L (16×MIC) caspofungin, but not by any other concentrations. After 48 h, decreases in viable cfu numbers at 1–16 mg/L caspofungin concentrations for \textit{C. parapsilosis} and \textit{C. orthopsilosis} varied between 1.07 and 2.95 log\textsubscript{10} cfu/mL and between 1.18 and 2.97 log\textsubscript{10} cfu/mL, respectively. After 48 h, caspofungin was fungicidal at concentrations of 1–8 mg/L (16–128×MIC) against all \textit{C. metapsilosis} isolates apart from isolate number CP92.

In killing studies with AM3, a fungistatic effect was observed after 24 h; two of the seven \textit{C. parapsilosis} isolates showed PG (Table 1). After 48 h, four of the seven \textit{C. parapsilosis} isolates were killed at ≥0.5 mg/L caspofungin concentrations (≥0.5–2×MIC); the remaining three isolates (isolates 9150, 896/1 and CP117) showed PG. All \textit{C. orthopsilosis} isolates showed PG after 24 h (Table 1). However, after 48 h, all isolates were killed by caspofungin concentrations of 0.12–1 mg/L (2–16×MIC) or higher. All \textit{C. metapsilosis} strains were killed at caspofungin concentrations of ≥1 mg/L after 48 h, but not after 24 h (Table 1).

In our work, the three \textit{C. orthopsilosis} isolates behaved similar to \textit{C. parapsilosis} after 24 h; fungistatic or PG effects were observed regardless of the medium used. However, in AM3 after 48 h, caspofungin proved to be clearly fungicidal against \textit{C. orthopsilosis}, but not against \textit{C. parapsilosis} isolates.

Table 1. Influence of solvent on killing activity of caspofungin (CAS) against \textit{C. parapsilosis}, \textit{C. orthopsilosis} and \textit{C. metapsilosis} isolates

<table>
<thead>
<tr>
<th>Isolate number</th>
<th>RPMI-1640 MICa (mg/L)</th>
<th>CAS effect in time–kill studies</th>
<th>MICa (mg/L)</th>
<th>Antibiotic medium 3 CAS effect in time–kill studies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>after 24 h</td>
<td>after 48 h</td>
<td>after 24 h</td>
<td>after 48 h</td>
</tr>
<tr>
<td>\textit{C. parapsilosis}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCC 22019</td>
<td>0.5fungistatic</td>
<td>fungistatic</td>
<td>0.25fungistatic</td>
<td>fungistatic</td>
</tr>
<tr>
<td>9150 (Hungary, blood)</td>
<td>1–2fungistatic</td>
<td>fungistatic</td>
<td>0.25fungistatic</td>
<td>fungicidal at ≥0.5 mg/L PGb started at 8 mg/L fungicidal at ≥0.12 mg/L fungicidal at ≥0.25 mg/L</td>
</tr>
<tr>
<td>509 (Hungary, throat)</td>
<td>0.5fungistatic</td>
<td>fungicidal at 16 mg/L</td>
<td>0.25–0.5PGb started at 1 mg/L fungicidal at ≥0.12 mg/L fungicidal at ≥0.25 mg/L</td>
<td></td>
</tr>
<tr>
<td>2845 (Hungary, blood)</td>
<td>0.5–1fungistatic</td>
<td>fungistatic</td>
<td>0.25PGb started at 16 mg/L fungicidal at ≥0.25 mg/L</td>
<td></td>
</tr>
<tr>
<td>896/1 (Hungary, wound)</td>
<td>1–2fungistatic</td>
<td>fungicidal at 16 mg/L</td>
<td>0.25–0.5fungistatic</td>
<td>fungicidal at ≥1 mg/L PGb started at 16 mg/L</td>
</tr>
<tr>
<td>CP120 (Italy, faeces)</td>
<td>0.5fungistatic</td>
<td>fungicidal at 16 mg/L</td>
<td>0.25fungistatic</td>
<td>fungicidal at ≥1 mg/L PGb started at 16 mg/L</td>
</tr>
<tr>
<td>CP117 (Italy, nail)</td>
<td>0.5–1fungistatic</td>
<td>fungistatic</td>
<td>0.25fungistatic</td>
<td>fungicidal at ≥1 mg/L</td>
</tr>
<tr>
<td>\textit{C. orthopsilosis}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP85 (Italy, catheter)</td>
<td>0.12fungistaticc</td>
<td>fungistaticc</td>
<td>0.06PGb started at 16 mg/L fungicidal at ≥0.12 mg/L fungicidal at ≥0.12 mg/L</td>
<td></td>
</tr>
<tr>
<td>CP25 (Italy, nail)</td>
<td>0.12–0.25fungistatic</td>
<td>fungicidal at 16 mg/L</td>
<td>0.06PGb started at 8 mg/L fungicidal at ≥0.12 mg/L</td>
<td></td>
</tr>
<tr>
<td>CP125 (Italy, nail)</td>
<td>0.12fungistatic</td>
<td>fungicidal at 16 mg/L</td>
<td>0.06PGb started at 8 mg/L fungicidal at ≥0.12 mg/L</td>
<td></td>
</tr>
<tr>
<td>\textit{C. metapsilosis}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP5 (Italy, sputum)</td>
<td>0.25fungicidal at ≥4 mg/L</td>
<td>fungicidal at ≥1 mg/L</td>
<td>0.06fungicidal at ≥0.06 mg/L fungicidal at ≥0.06 mg/L</td>
<td></td>
</tr>
<tr>
<td>CP92 (Italy, faeces)</td>
<td>0.5fungistatic</td>
<td>fungicidal at ≥1 mg/L</td>
<td>0.03–0.06PGb started at 16 mg/L fungicidal at ≥0.06 mg/L</td>
<td></td>
</tr>
<tr>
<td>CP86 (Italy, vagina)</td>
<td>0.25fungicidal at ≥8 mg/L</td>
<td>fungicidal at ≥8 mg/L</td>
<td>0.03–0.06fungicidal at ≥0.5 mg/L fungicidal at ≥0.06 mg/L</td>
<td></td>
</tr>
<tr>
<td>12821 (Hungary, blood)</td>
<td>0.12–0.25fungicidal at ≥4 mg/L</td>
<td>fungicidal at ≥1 mg/L</td>
<td>0.03–0.06fungicidal at ≥0.5 mg/L fungicidal at ≥0.06 mg/L</td>
<td></td>
</tr>
</tbody>
</table>

aRanges show the results of two independent experiments.

bParadoxical growth.

cThis isolate was killed at a caspofungin concentration of 2 mg/L.
C. metapsilosis isolates, regardless of the medium used, were more susceptible to the killing activity of caspofungin.

This study is the first comparing caspofungin killing activity against the closely related species C. parapsilosis, C. orthopsilosis and C. metapsilosis. Killing curves, regardless of the medium used, showed a decreasing order of susceptibility to caspofungin: C. metapsilosis > C. orthopsilosis > C. parapsilosis.

Based on high echinocandin MICs for C. parapsilosis sensu stricto, in the case of isolates identified as C. parapsilosis sensu lato low MICs of echinocandins may be regarded as an indicator that an isolate is in fact C. orthopsilosis or C. metapsilosis; in the case of isolates with low echinocandin MICs, DNA-based identification1–3 of the isolates is desirable. Because C. orthopsilosis and C. metapsilosis seem to be relevant species among bloodstream isolates in some countries,2,3 this distinction may be particularly important in some epidemiological situations or in clinical situations when the use of echinocandins as therapy or prophylaxis is planned.

Acknowledgements

We thank Ariana Tavanti for kindly providing the Italian isolates. Caspofungin pure powder was kindly provided by Merck Research Laboratories, Rahway, NJ, USA.

Funding

The study did not receive financial support from third parties.

Transparency declarations

None to declare.

References

Journal of Antimicrobial Chemotherapy
doi:10.1093/jac/dkn409
Advance Access publication 28 September 2008

Posaconazole concentrations in the central nervous system

Maria J. G. T. Rüping1, Nadine Albermann2, Friedrich Ebinger2, Irene Burckhardt3, Claudia Beisel1, Carsten Müller4, Jörg J. Vehreschild1, Matthias Kochanek1, Gerd Fätkenheuer1, Christopher Bangard5, Andrew J. Ullmann6, Wolfgang Herr6, Karin Kolbe6, Michael Hallek1 and Oliver A. Cornely1.7*

1 1st Department of Internal Medicine, University of Cologne, Cologne, Germany; 2 Children’s Hospital, University of Heidelberg, Heidelberg, Germany; 3 Institute for Hygiene and Medical Microbiology, University of Heidelberg, Heidelberg, Germany; 4 Institute of Pharmacology, University of Cologne, Cologne, Germany; 5 Department of Radiology, University of Cologne, Cologne, Germany; 6 3rd Medical Department, Johannes Gutenberg University, Mainz, Germany; 7 Clinical Trials Center Cologne, University of Cologne, Cologne, Germany

Keywords: invasive fungal infections, antifungal therapy, FungiScope, plasma drug levels, therapeutic drug monitoring

Sir,

Posaconazole is a new triazole approved for prophylaxis in neutropenic high-risk patients1,2 and as salvage treatment of, for example, invasive aspergillosis.3 Pharmacokinetic analyses suggest an exposure–response relationship,3 diarrhoea, proton pump inhibitors (PPIs) and elevated gamma-glutamyl-transferase are associated with reduced plasma concentrations.5

We report the first three patients in whom posaconazole concentrations in the CNS were determined and related to their respective serum concentrations.

Patient A

A 46-year-old male taking prophylactic posaconazole 200 mg three times a day and prednisone 75 mg intravenously (iv) twice daily for extensive graft-versus-host disease with severe diarrhoea presented with tenderness over the right maxillary sinus accompanied by paresis of cranial nerves III, IV and VI, acute loss of visual acuity of the left eye and a C-reactive protein (CRP) increase to 253 mg/dL. Cranial MRI revealed a space-occupying lesion in the right maxillary sinus and an occluded right internal carotid. The same day, the patient underwent surgery of the maxillary sinuses. Histopathological examination