Letters to the Editor

Presence of the epidemic European fusidic acid-resistant impetigo clone (EEFIC) of Staphylococcus aureus in France—joint authors’ response


1 LEO Pharma, Industriparken 55, DK-2750 Ballerup, Denmark; 2 Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark; 3 Service de Bactériologie-Hygiène, CHU Pitié-Salpêtrière, Paris, France; 4 Hospital Robert Debré, Service Dermatologie, Avenue de Général Koening, F-51092 Reims Cedex, France; 5 Department of Clinical Microbiology, Central Pathology Laboratory, St James’s Hospital, Dublin 8, Ireland; 6 Department of Clinical Microbiology, Leeds General Infirmary, Great George Street, Leeds, West Yorkshire LS1 3EX, UK

Keywords: SSTI, typing, EPISA

*Corresponding author. Tel: +45-72262990; Fax: +45-72263303; E-mail: anders.larsen@leo-pharma.com

Sir, The finding by Laurent et al.1 of isolates belonging to the epidemic European fusidic acid-resistant impetigo clone (EEFIC) in France is interesting as this observation is somewhat in contrast to our findings in the EPISA study.2,3 However, as proposed in the EPISA study by Denton et al.,4 the different proportions of patients suffering from impetigo in the UK (120/461; 26%), Ireland (49/449; 11%) and France (36/480; 7.5%) could be associated with ‘cultural differences in patients seeking medical assistance’. Laurent et al.1 also point to this explanation as the French people may prefer to consult specialists or hospitals if affected by impetigo. In the EPISA study, 25 Staphylococcus aureus isolates obtained from French impetigo patients were characterized, but in contrast to the UK and Ireland, none of these isolates belonged to the EEFIC.2 Thus, although impetigo cases may be more numerous in France than found in our study, the dissemination of the EEFIC may still be limited. The latter is confirmed by the results of Laurent et al.,1 since they only found 10 EEFIC isolates (extrapolated: 25–50 isolates) after thorough molecular investigations on a large collection of S. aureus spanning an 8 year period and originating from hospital as well as non-hospital (community) laboratories.

Transparency declarations

The EPISA study was sponsored by LEO Pharma. R. L. S., V. J., M. D., B. O. and P. B. advised LEO Pharma on the design, execution and presentation of the EPISA study. M. D. has received consultancy fees from LEO Pharma for his role as lead investigator. Z. W., A. S. H. and A. R. L. are employees of LEO Pharma but hold no stock options in the company.

References


Influenza virus infection: don’t forget the role of the mucociliary system!

Jean-Marie Duez*, Nathalie Sixt and André Péchinot

Laboratoire de Bactériologie Médicale, Centre Hospitalier Universitaire de Dijon, 21070 Dijon Cedex, France

Keywords: sialic acid, sialidase, neuraminidase, mucus

*Corresponding author. Tel: +33-380-293-523; Fax: +33-380-293-280; E-mail: jean-marie.duez@chu-dijon.fr

Sir, In a recent issue, Zhang1 summarized the interest in animal models to study the relationship between the influenza virus and secondary pneumonias. We agree with the role of a preceding influenza infection in secondary pneumonia.2–4 Referring to studies by McCullers’s group,5–7 Zhang speculated on the adherence of Streptococcus pneumoniae in the lungs after cleavage of sialic acid residues from the surface of host cells, exposing cryptic receptors to S. pneumoniae and allowing bacteria to adhere. However, he did not mention that McCullers stated in 2006, ‘the receptors that pneumococcus utilizes to adhere and invade in the lung are currently unknown’.8 As these receptors have been searched for, but not found, it is tempting to suggest that perhaps they do not exist. Thus, they cannot be a reason to predict risks in the case of the therapeutic use of a sialidase fusion protein.

In the same issue, Nicholls et al.9 supported the therapeutic use of sialidase fusion proteins. These authors made a clear distinction between the secondary S. pneumoniae infection in

421