encoding a putative replication protein was identified. No typical genetic element (such as an insertion sequence) that could explain the acquisition of bla_{OXA-23} was identified at each extremity.

In the Middle East, clonal outbreaks of infections caused by carbapenem-resistant A. baumannii strains have been reported, having occurred in the United Arab Emirates, Qatar, Iran and Iraq.1–9 In the United Arab Emirates, resistance to carbapenems was associated with the production of OXA-23;6 the carbapenem resistance mechanisms were not investigated in other studies. Here we identified heterogeneity of CHDL-encoding genes as the source of carbapenem resistance among A. baumannii isolates from the same hospital. This is, to the best of our knowledge, the first report of such diversity of carbapenem resistance determinants in a restricted geographical area. This diversity of A. baumannii isolates and of CHDL genes in Bahrain may be related to the fact that this region of the Middle East has a very mixed population originating from various parts of the world.

Funding

This work was financed by a grant from the Ministère de la Recherche, Université Paris XI, Paris, France, and mostly by a grant from the European Community (DRESP2, LSHM-CT-2005-01705) and by the INSERM, France.

Transparency declarations

None to declare.

References

Journal of Antimicrobial Chemotherapy
doi:10.1093/jac/dkp046
Advance Access publication 24 February 2009

Emergence of extended-spectrum-AmpC-expressing Escherichia coli isolates in Belgian hospitals

Pierre Bogaerts1,\ast, Hector Rodriguez-Villalobos2, Christine Lauren1, Ariane Deplano2, Marc J. Struelens2 and Youri Glupczynski1

1Laboratoire de Bactériologie, Cliniques Universitaires UCL de Mont-Godinne, B-5530 Yvoir, Belgium; 2Laboratoire de Bactériologie, Hôpital Universitaire Erasme—ULB, B-1070 Bruxelles, Belgium

Keywords: AmpC \beta-lactamases, cephalosporin resistance, ESAC, extended-spectrum cephalosporinase

*Corresponding author. Tel: +32-81-42-32-41; Fax: +32-81-42-32-46; E-mail: pierre.bogaerts@uclouvain.be

Sir,
The overproduction of AmpC chromosomal cephalosporinases with broadened substrate activity has recently been reported in clinical isolates of Escherichia coli.1 These so-called extended-spectrum AmpC (ESAC) \beta-lactamases confer reduced susceptibility to all cephalosporins, including the fourth-generation agents cefepime and ceftizoxime. We aimed to investigate the possible occurrence of ESAC-expressing E. coli isolates in Belgium.

Among the 6850 non-duplicate E. coli clinical isolates (one isolate/patient) that were recovered from two Belgian hospitals (Erasme Hospital, Brussels and UCL de Mont-Godinne Hospital, Yvoir) between 2004 and 2006, 83 were found to display a \beta-lactam resistance pattern consistent with AmpC overproduction on the basis of resistance to amoxicillin, amoxycillin/clavulanic acid, cefazolin and ceftoxitin by the disc diffusion method using the CLSI interpretative guidelines.2 The presence of AmpC was further confirmed by analytical isoelectric focusing demonstrating a band at a pI of ~8.5–9.0, disappearing in the presence of oxacillin.

Fourteen out of the 83 AmpC hyper-producing isolates (Table 1) were resistant to ceftazidime and cefotaxime by current EUCAST breakpoints3 and intermediate to cepfime (MIC above 1 mg/L; 1.5–8 mg/L). Sequence analysis of their chromosomal ampC genes revealed that eight of the isolates harboured an L293P mutation, while two harboured an H296P mutation that is reported here for the first time, have already been reported in E. coli.2 Among the remaining six isolates, one harboured an S287N mutation, while three carried a mutation in the intI1 gene (Table 1).

No mutation was found in the chromosomal AmpC of the two remaining isolates. Instead, ISEcp1-bla_{CMY-2} (plasmid-mediated ampC gene) was detected in those E. coli. In one of the isolates (MIC of cefepime=4 mg/L), the reduced susceptibility to cefpime could be ascribed to the presence of a bla_{OXA-30}

1073
β-lactamase gene, which was identified by PCR/sequencing and isoelectric focusing (pI = 7.3, not susceptible to clavulane and oxacillin). A TEM-1-β-lactamase-encoding gene alone was evidenced in the last isolate (MIC of cefepime = 1.5 mg/L).

In 69 out of the 83 isolates with cefepime MICs ≤1 mg/L, no single mutation assigned to the ESAC phenotype could be detected in the chromosomal AmpC.

Among the 12 isolates expressing ESAC β-lactamases, 11 strains (9 of which were recovered from urine or stool samples) belonged to phylogenetic group A, a group usually associated with the commensal non-virulent flora, and one isolate (from a stool sample) belonged to phylogenetic group D, a group usually associated with virulent and extra-intestinal strains.6 Ten out of 12 of the ESAC-expressing isolates were closely related by PFGE (>95%) while the ESAC-expressing isolate EC03, belonging to phylogroup D, harboured a different rep-PCR and PFGE profile sharing <70% and 60%, respectively, with the previous isolates. Isolate EC12, belonging to phylogroup A, was not related to the other ESAC-producing isolates.

The putative new ESAC-β-lactamase-encoding gene (accession number FJ439686) was cloned in E. coli TOP10 using pCR®-Blunt II-TOPO® plasmid as vector (Invitrogen®, Merelbeke, Belgium) (Table 1). AmpC from E. coli EC WT, expressing a wild-type AmpC with exactly the same sequence as L293P ESAC except for the absence of a mutation at amino acid L293, was used as a control. ESAC transformant L293P TOP10 was resistant to cefepime while transformant WT TOP10 remained susceptible to this cephalosporin. Since the AmpC sequences of L293P TOP10 and WT TOP10 only differed by the L293P amino acid substitution located inside the R2 loop region, already shown to be involved in the ESAC phenotype in Enterobacteriaceae,1 this strongly suggested that this mutation was responsible for the resistance to cefepime. This study represents the first report of ESAC-expressing E. coli outside of France. As reported by Mammeri et al.,3 our study confirms the occurrence of ESAC isolates among AmpC-overproducing E. coli isolates in Belgian hospitals (12 out of 83, i.e. 14.5%).

In contrast to previous reports, two different molecular typing methods showed a consistent clonal relatedness between the vast majority of the ESAC isolates, most of which belong to phylogroup A. It is possible that the selection of specific commensal endemic clones of chromosomal AmpC hyper-producers might be the reflection of similar antibiotic policies that obviously favour the clinical usage of β-lactam/β-lactamase inhibitor associations and of expanded-spectrum cephalosporins. In any case, this observation underlines the need to further investigate the epidemiology of AmpC-producing E. coli on a wider scale at a national level, as well as to evaluate the clinical relevance of this mechanism of resistance.

Funding
This work was funded by a grant from the Belgian Antibiotic Policy Coordination Committee and by a grant from the Belgian Fond National de la Recherche Scientifique Médicale (FRSM 3.4522.09) to UCL Mont-Godinne/ULB Erasme.

Transparency declarations
None to declare.

References
Reduced susceptibility of multidrug-resistant
Acinetobacter baumannii to tigecycline in combination with 1-(1-naphthylmethyl)-piperazine is not a pH-dependent phenomenon

D. W. Wareham1,2*, N. C. Gordon2, J. B. Casals3 and D. C. Bean1

1Centre for Infectious Disease, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine and Dentistry, London, UK; 2Division of Infection, Barts and The London NHS Trust, London, UK; 3Rosco Diagnostica, Taastrup, Denmark

Keywords: A. baumannii, MDR, multidrug resistance, efflux inhibitor

*Corresponding author. Centre for Infectious Disease, Institute of Cell and Molecular Science, 4 Newark Street, Whitechapel, London E1 2AT, UK. E-mail: d.w.wareham@qmul.ac.uk

Research letters

Sir,

Acinetobacter baumannii has emerged as an important cause of nosocomial infection in the immunocompromised and critically ill. The organism frequently exhibits multidrug resistance with only polymyxin derivatives and the glycyccline antibiotic tigecycline retaining significant activity in vitro. Resistance to these agents has been reported and in the case of tigecycline is thought to be mediated by the AdeABC resistance-nodulation-division efflux pump. Recently, we described a curious phenomenon whereby strains of A. baumannii belonging to the multidrug-resistant OXA-23 clone 1 appeared to decrease in susceptibility to tigecycline in the presence of the efflux pump inhibitor 1-(1-naphthylmethyl)-piperazine (NMP). The converse was observed when NMP was combined with doxycycline, tetracycline or minocycline. In an attempt to explain this finding, we considered whether low pH could contribute to this observation, as the activity of many tetracyclines is known to be enhanced by pH and the preparation of NMP requires acidification of the solvent (0.2 M HCl, pH 2). We were unable to detect any significant changes in the pH of the medium when NMP was added to Iso-Sensit agar (Oxoid, Basingstoke, UK), presumably due to the low volume (640 µL of 10000 mg/L stock solution per 100 mL of agar) and the buffering capacity of the medium. We therefore proceeded to study the effect of directly supplementing antimicrobial discs with NMP and the NMP solvent. In disc diffusion tests, blunting of the zones of inhibition was observed when discs containing 64 µg of NMP were placed 10 mm from 15 µg tigecycline discs (Figure 1a). When this was repeated using minocycline, the converse occurred with enhancement of the zone size adjacent to the NMP-containing disc (Figure 1b). Addition of solvent alone to discs placed 10 mm from tigecycline discs had no effect on zone sizes (Figure 1c).

It is well documented that in vitro testing of the susceptibility of A. baumannii to tigecycline is highly dependent on the method used and the level of manganese supplementation. However, the addition of acidic substances in disc diffusion tests had no effect on tigecycline susceptibility and certainly did not account for the paradoxical decrease in susceptibility observed with NMP versus other tetracyclines.

Funding

This study was carried out as part of our routine practice and received no funding.

Transparency declarations

D. W. W. and N. C. G. have received funding to attend infectious diseases meetings from Wyeth. D. C. B. and J. B. C. have nothing to declare.

Figure 1. Disc diffusion tests with tigecycline (TGC), minocycline (MIN) and NMP versus A. baumannii OXA-23 clone 1. Blunting (a) of the tigecycline and expansion (b) of the minocycline zone size when placed adjacent to a disc containing 64 µg of NMP. No effect (c) on tigecycline zone size when placed adjacent to a disc containing the NMP dissolving solution alone.