Diversity of plasmid-mediated carbapenem-hydrolysing oxacillinas among carbapenem-resistant Acinetobacter baumannii isolates from Kingdom of Bahrain

Pauline D. Mugnier1, Khalid Mubarak Bindayna2, Laurent Poirel1 and Patrice Nordmann1*

1Service de Bactériologie-Virologie, INSERM U914, Emergence Resistance to Antibiotics, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine et Université Paris Sud, Bicêtre, France; 2College of Medicine, Arabian Gulf University and Salmaniya Medical Complex, Kingdom of Bahrain

Keywords: A. baumannii, Middle East, resistance, β-lactamases

Sir,

Carbapenem resistance in Acinetobacter baumannii is now increasingly reported. The most prevalent mechanism of carbapenem resistance in A. baumannii corresponds to the production of acquired carbapenem-hydrolysing class D β-lactamases (CHDLs)1 encoded by blaOXA-23-like, blaOXA-40-like or blaOXA-58-like genes. Whereas the blaOXA-40 gene has been detected in Portugal, Spain and the USA, blaOXA-23 and blaOXA-58 genes have disseminated worldwide.1

The aim of our study was to identify the molecular mechanisms leading to carbapenem resistance among a panel of A. baumannii isolates exhibiting resistance or intermediate susceptibility to imipenem and collected from September 2007 to March 2008 in the Salmaniya Medical Complex, Kingdom of Bahrain, which is a 1000 bed tertiary care centre.

A total of 454 A. baumannii isolates had been recovered during the studied period, among which 262 (58%) were resistant or intermediately susceptible to imipenem. Among the latter, during the studied period, among which 262 (58%) were resistant or intermediately susceptible to imipenem. Among the latter, five isolates possessed a blaOXA-40-like gene, and further sequencing revealed that this gene corresponded to blaOXA-72. The OXA-72 β-lactamase belongs to the OXA-40 subgroup together with OXA-25 and OXA-26 β-lactamases. The OXA-40-type β-lactamases differ by no more than five amino acids and possess weak carbapenemase properties. OXA-72 had been previously reported in a single Acinetobacter genomospecies 3 isolate in China,4 in a single Acinetobacter baylyi isolate in Korea5 and in several carbapenem-resistant A. baumannii isolates in Taiwan.6

Genotypic comparison was performed by PFGE, as described previously.7 The two OXA-23 producers (isolates 1 and 2) were clonally related (pulsotype I). The single blaOXA-58-positive isolate belonged to pulsotype II. The remaining blaOXA-72-positive isolates belonged to pulsotype III (isolates 4 and 5), IV (isolates 6 and 7) or V (isolate 8). All isolates were resistant to ticarcillin and piperacillin, and isolates carrying genes encoding CHDLs OXA-23 and OXA-72 were highly resistant to imipenem and meropenem, although the OXA-58 producer displayed lower MICs of imipenem and cefazidime (Table 1).

Mating-out experiments were performed as described previously,8 with OXA-23-, OXA-58- and OXA-72-positive isolates as donors and rifampicin-resistant A. baumannii BM4547 as the recipient strain. The transconjugants were selected on agar plates containing ticarcillin (50 mg/L) and rifampicin (50 mg/L). Transconjugants were obtained only with blaOXA-72-positive donors, and the transconjugants showed resistance to ticarcillin and decreased susceptibility to carbapenems (Table 1). The transconjugants harboured a 130 kb plasmid additionally conferring resistance to kanamycin and amikacin (data not shown).

Plasmid extracts, obtained as described previously,9 with OXA-58- and OXA-72-positive donors were used for transformation experiments with A. baumannii BM4547 as the recipient strain. Electrotransformation products were selected on plates containing ticarcillin (50 mg/L). Electroporation of plasmid extracts gave rise to A. baumannii BM4547 (pOXA-72) transformants, whereas no transformant was obtained with the OXA-58-positive donor strain. The blaOXA-72 gene was located on a 10 kb plasmid in all OXA-72-positive isolates. The blaOXA-72-positive A. baumannii transformants showed resistance to ticarcillin and decreased susceptibility to carbapenems (Table 1), without any additional antibiotic resistance marker.

In order to investigate the genetic structures surrounding the blaOXA-72 gene, cloning experiments were also performed. Total DNA of A. baumannii isolate 4 was digested with the SacI or HindIII restriction enzymes, ligated into corresponding sites of plasmid pBK-CMV and transferred by electroporation into Escherichia coli TOP10 as described previously.10 E. coli strains harbouring recombinant plasmid pBK-OXA-72 were selected on agar plates containing ticarcillin (50 mg/L) and kanamycin (30 mg/L). Detailed sequence analysis of pBK-OXA-72 showed that a gene encoding a putative inner membrane protein was present 300 bp upstream of blaOXA-72, whereas downstream a gene

Tn2006;3 but no ISAba1 copy was identified downstream of blaOXA-23. Isolate 3 harboured a blaOXA-58 gene that was bracketed by two copies of ISAba3, as described previously.1

Five isolates possessed a blaOXA-40-like gene, and further sequencing revealed that this gene corresponded to blaOXA-72. The OXA-72 β-lactamase belongs to the OXA-40 subgroup together with OXA-25 and OXA-26 β-lactamases. The OXA-40-type β-lactamases differ by no more than five amino acids and possess weak carbapenemase properties. OXA-72 had been previously reported in a single Acinetobacter genomospecies 3 isolate in China,4 in a single Acinetobacter baylyi isolate in Korea5 and in several carbapenem-resistant A. baumannii isolates in Taiwan.6

Genotypic comparison was performed by PFGE, as described previously.7 The two OXA-23 producers (isolates 1 and 2) were clonally related (pulsotype I). The single blaOXA-58-positive isolate belonged to pulsotype II. The remaining blaOXA-72-positive isolates belonged to pulsotype III (isolates 4 and 5), IV (isolates 6 and 7) or V (isolate 8). All isolates were resistant to ticarcillin and piperacillin, and isolates carrying genes encoding CHDLs OXA-23 and OXA-72 were highly resistant to imipenem and meropenem, although the OXA-58 producer displayed lower MICs of imipenem and cefazidime (Table 1).

Mating-out experiments were performed as described previously,8 with OXA-23-, OXA-58- and OXA-72-positive isolates as donors and rifampicin-resistant A. baumannii BM4547 as the recipient strain. The transconjugants were selected on agar plates containing ticarcillin (50 mg/L) and rifampicin (50 mg/L). Transconjugants were obtained only with blaOXA-72-positive donors, and the transconjugants showed resistance to ticarcillin and decreased susceptibility to carbapenems (Table 1). The transconjugants harboured a 130 kb plasmid additionally conferring resistance to kanamycin and amikacin (data not shown).

Plasmid extracts, obtained as described previously,9 with OXA-58- and OXA-72-positive donors were used for transformation experiments with A. baumannii BM4547 as the recipient strain. Electrotransformation products were selected on plates containing ticarcillin (50 mg/L). Electroporation of plasmid extracts gave rise to A. baumannii BM4547 (pOXA-72) transformants, whereas no transformant was obtained with the OXA-58-positive donor strain. The blaOXA-72 gene was located on a 10 kb plasmid in all OXA-72-positive isolates. The blaOXA-72-positive A. baumannii transformants showed resistance to ticarcillin and decreased susceptibility to carbapenems (Table 1), without any additional antibiotic resistance marker.

In order to investigate the genetic structures surrounding the blaOXA-72 gene, cloning experiments were also performed. Total DNA of A. baumannii isolate 4 was digested with the SacI or HindIII restriction enzymes, ligated into corresponding sites of plasmid pBK-CMV and transferred by electroporation into Escherichia coli TOP10 as described previously.10 E. coli strains harbouring recombinant plasmid pBK-OXA-72 were selected on agar plates containing ticarcillin (50 mg/L) and kanamycin (30 mg/L). Detailed sequence analysis of pBK-OXA-72 showed that a gene encoding a putative inner membrane protein was present 300 bp upstream of blaOXA-72, whereas downstream a gene
<table>
<thead>
<tr>
<th>β-Lactam(s)</th>
<th>A. baumannii pulsortype I (OXA-23)</th>
<th>A. baumannii pulsortype II (OXA-58)</th>
<th>A. baumannii pulsortype III (OXA-72)</th>
<th>A. baumannii pulsortype IV (OXA-72)</th>
<th>A. baumannii BM4547 (pOXA-72)</th>
<th>A. baumannii BM4547 RifR (pOXA-23)</th>
<th>A. baumannii BM4547 and BM4547 RifR reference strain</th>
<th>E. coli TOP10 harboring recombinant plasmid pBK-OXA-72</th>
<th>E. coli TOP10 reference strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>16</td>
<td>>256</td>
<td>2</td>
</tr>
<tr>
<td>Amoxicillin + CLA</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>16</td>
<td>>256</td>
<td>2</td>
</tr>
<tr>
<td>Ticarcillin</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>8</td>
<td>>256</td>
<td>1</td>
</tr>
<tr>
<td>Ticarcillin + CLA</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>8</td>
<td>>256</td>
<td>1</td>
</tr>
<tr>
<td>Piperacillin</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>8</td>
<td>>256</td>
<td>1</td>
</tr>
<tr>
<td>Piperacillin + TZB</td>
<td>>256</td>
<td>64</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>4</td>
<td>>256</td>
<td>1</td>
</tr>
<tr>
<td>Cefalotin</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>4</td>
<td>>256</td>
<td>1</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>4</td>
<td>>256</td>
<td>1</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>>256</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>16</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>>256</td>
<td>8</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>16</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>16</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>>256</td>
<td>32</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>32</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>32</td>
<td>32</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>16</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>>256</td>
<td>32</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>4</td>
<td>>256</td>
<td>1</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>128</td>
<td>32</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td><0.06</td>
<td><0.06</td>
<td><0.06</td>
</tr>
<tr>
<td>Imipenem</td>
<td>32</td>
<td>32</td>
<td>1.5</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>0.25</td>
<td>0.25</td>
<td><0.06</td>
</tr>
<tr>
<td>Meropenem</td>
<td>32</td>
<td>1.5</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>1</td>
<td>0.12</td>
<td><0.06</td>
</tr>
</tbody>
</table>

CLA, clavulanic acid (4 mg/L); TZB, tazobactam (4 mg/L).
encoding a putative replication protein was identified. No typical genetic element (such as an insertion sequence) that could explain the acquisition of blaOXA-72 was identified at each extremity.

In the Middle East, clonal outbreaks of infections caused by carbapenem-resistant A. baumannii strains have been reported, having occurred in the United Arab Emirates, Qatar, Iran and Iraq. In the United Arab Emirates, resistance to carbapenems was associated with the production of OXA-23; the carbapenem resistance mechanisms were not investigated in the other studies. Here we identified heterogeneity of CHDL-encoding genes as the source of carbapenem resistance among A. baumannii isolates from the same hospital. This is, to the best of our knowledge, the first report of such diversity of carbapenem resistance determinants in a restricted geographical area. This diversity of A. baumannii isolates and of CHDL genes in Bahrain may be related to the fact that this region of the Middle East has a very mixed population originating from various parts of the world.

Funding
This work was financed by a grant from the Ministère de la Recherche, Université Paris XI, Paris, France, and mostly by a grant from the European Community (DRESP2, LSHM-CT-2005-01705) and by the INSERM, France.

Transparency declarations
None to declare.

References

Journal of Antimicrobial Chemotherapy
doi:10.1093/jac/dkp046
Advance Access publication 24 February 2009

Emergence of extended-spectrum-AmpC-expressing
Escherichia coli isolates in Belgian hospitals

Pierre Bogaerts1*, Hector Rodriguez-Villalobos2, Christine Laurent1, Ariane Deplano3, Marc J. Struelens2 and Youri Glupczynski1

1Laboratoire de Bactériologie, Cliniques Universitaires UCL de Mont-Godinne, B-5530 Yvoir, Belgium; 2Laboratoire de Bactériologie, Hôpital Universitaire Erasme—ULB, B-1070 Bruxelles, Belgium

Keywords: AmpC β-lactamases, cephalosporin resistance, ESAC, extended-spectrum cephalosporinase

*Corresponding author. Tel: +32-81-42-32-41; Fax: +32-81-42-32-46; E-mail: pierre.bogaerts@uclouvain.be

Sir,
The overproduction of AmpC chromosomal cephalosporinases with broadened substrate activity has recently been reported in clinical isolates of Escherichia coli.1 These so-called extended-spectrum AmpC (ESAC) β-lactamases confer reduced susceptibility to all cephalosporins, including the fourth-generation agents cefepime and ceftazidime. We aimed to investigate the possible occurrence of ESAC-expressing E. coli isolates in Belgium.

Among the 6850 non-duplicate E. coli clinical isolates (one isolate/patient) that were recovered from two Belgian hospitals (Erasme Hospital, Brussels and UCL de Mont-Godinne Hospital, Yvoir) between 2004 and 2006, 83 were found to display a β-lactam resistance pattern consistent with AmpC overproduction on the basis of resistance to amoxicillin, amoxicillin/clavulanic acid, cefazolin and cefoxitin by the disc diffusion method using the CLSI interpretative guidelines.2 The presence of AmpC was further confirmed by analytical isoelectric focusing demonstrating a band at a pI of ~8.5–9.0, disappearing in the presence of oxacillin.

Fourteen out of the 83 AmpC hyper-producing isolates (Table 1) were resistant to cefazidime and cefotaxime by current EUCAST breakpoints3 and intermediate to cefepime (MIC above 1 mg/L; 1.5–8 mg/L). Sequence analysis of their chromosomal AmpC genes revealed that eight of the isolates harboured an L293P mutation, one harboured a V298L mutation and one harboured an S287N mutation, while two harboured an H296P mutation that is reported here for the first time, have already one harboured an L293P mutation. All these mutations, except the L293P mutation, one harboured a V298L mutation and one harboured an S287N mutation, while two harboured an H296P mutation that is reported here for the first time, have already been reported in E. coli and were shown to be involved in the ESAC phenotype.4,5

No mutation was found in the chromosomal AmpC of the two remaining isolates. Instead, IS601-cl–blaCMY–2 (plasmid-mediated ampC gene) was detected in those E. coli. In one of the isolates (MIC of cefepime=4 mg/L), the reduced susceptibility to cefepime could be ascribed to the presence of a blaOXA-30 gene.