S-nitrosoglutathione (GSNO) is cytotoxic to intracellular amastigotes and promotes healing of topically treated Leishmania major or Leishmania braziliensis skin lesions

Inez Silva Fernandes Costa, Gabriela Freitas Pereira de Souza, Marcelo Ganzarolli de Oliveira, and Ises de Almeida Abrahamsohn

1Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, USP, 05508-900 São Paulo, SP, Brazil; 2Departamento de Físico-Química, Instituto de Química, Universidade Estadual de Campinas, UNICAMP, 13083-970, CP 6154, Campinas, SP, Brazil

*Corresponding author. Tel: +55-11-3091-7327; Fax: +55-11-3091-7224; E-mail: iabraham@usp.br

Received 3 December 2012; returned 15 February 2013; revised 13 March 2013; accepted 2 May 2013

Objectives: This study was designed to verify the cytotoxic activity of S-nitrosoglutathione (GSNO) against intracellular Leishmania amastigotes and to test its efficacy as a topical treatment of localized cutaneous leishmaniasis (LCL) in Leishmania major- or Leishmania braziliensis-infected mice.

Methods: Cytotoxic activity of GSNO was verified in L. major-infected THP-1 macrophages. S-nitrosated proteins were detected by immunofluorescence. Topical treatment was done by daily application of a solution of GSNO in PBS to the skin ulcer of Leishmania-infected mice. BALB/c and interferon-γ-knockout (IFN-γ-KO) C57BL/6 mice were infected with L. major and L. braziliensis, respectively. Ulcer size was measured weekly and the parasite loads were determined in the lesion and lymph nodes. Controls received PBS topically or amphotericin B (AMB) intravenously.

Results: The number of intracellular L. major amastigotes was markedly reduced in GSNO-treated cultures; in these, staining for S-nitrosated proteins was present in the cytoplasm and colocalized with intracellular amastigotes. Topical treatment with GSNO of L. major ulcers in BALB/c mice suppressed lesion growth, reduced the parasite load and induced healing comparable to the effect of intravenously administered AMB. Topical GSNO treatment was also efficient at suppressing lesion growth in IFN-γ-KO mice infected with L. braziliensis.

Conclusions: GSNO is cytotoxic to intracellular L. major amastigotes in vitro and had a healing effect on LCL caused by L. major and L. braziliensis in mice. These positive results on the topical therapeutic effect of GSNO in mouse leishmaniasis infections provide the experimental basis for a possible future trial in the treatment of human LCL.

Keywords: localized cutaneous leishmaniasis-LCL, S-nitrosothiols, therapy, nitric oxide donor molecules

Introduction

Many species of the protozoan Leishmania can cause infection manifested by cutaneous lesions. The most common clinical form of leishmaniasis is that of a single ulcerated lesion, called localized cutaneous leishmaniasis (LCL). Less frequent are mucosal or mucocutaneous forms and, much rarer still, diffuse cutaneous leishmaniasis. Skin ulceration can also appear after treatment of visceral leishmaniasis and is called post-kala-azar cutaneous leishmaniasis (reviewed in 1). The most widely used and still first choice therapy for cutaneous leishmaniasis are the pentavalent antimonial drugs Pentostam® and Glucantime® administered as one or more series of 10 or 20 intravenous (iv) or intramuscular injections to ambulatory patients, generally over a period of ≥20 days. 2,5,6 The polyene antibiotic amphotericin B (AMB) is indicated in cases of parasite resistance to antimonials, but is expensive and also requires parenteral injection. 2,6 Because of the difficulty of getting to the medical service, the often painful injections, the relative delay before lesion regression and drug toxicity, many patients with LCL receive suboptimal doses or abandon the treatment. 5,7

Such difficulties have led to a continuous search for more convenient and efficient therapies for LCL. Treatment of LCL patients with orally administered drugs, such as miltefosine and antifungal azoles, has had variable success rates. 2,5–9 Topical treatment of LCL lesions with ointments has also met with variable
success. A consultative meeting on strategies for the treatment of LCL considered the search for new topical treatments for LCL as an important strategy among the several approaches to therapy. Topical therapy could also be beneficial in association with systemic therapy, in order to accelerate the healing process.

In a mammalian host, *Leishmania* parasites reside as amastigotes inside macrophages. The promastigote forms inoculated by the insect into the skin enter the local macrophages, become amastigotes, multiply and, upon host cell death, are released to be captured by neighbour macrophages; they are disseminated by lymph and/or blood to other organs. The infection is controlled by macrophages activated by innate and adaptive immune mechanisms. Reactive oxygen or nitrogen intermediates produced by activated macrophages are toxic to the parasites and have a major role in parasite control. Among them, nitric oxide (NO) is one of the species known to be very toxic to *Leishmania*. Several molecules of a group commonly known as NO donors have been tested and/or are used in humans to treat diseases of various aetiologies. Topical treatment of cutaneous *Leishmania* lesions with traditional NO donor molecules was reported to improve healing or not to have a significant effect.

More recently, GSNO and *S*-nitroso-N-acetylcysteine were shown to have potent growth-inhibitory activity on promastigote forms of *Leishmania major* and *Leishmania amazonensis* at neutral pH and in parasite liquid culture conditions. Because of its potential advantages, such as increased stability and availability in the solid dry form, we chose to investigate the activity of GSNO on intracellular *L. major* amastigotes in macrophage cultures and as a topical treatment of ulcerated *Leishmania* lesions in mice infected in the dorsal skin with *L. major* or *Leishmania braziliensis*.

Materials and methods

Cell cultures and parasites

The human macrophage cell line THP-1 (202 TIB; ATCC, Rockville, MD, USA) was grown at 37°C in a 5% CO2 humid atmosphere in RPMI medium supplemented with 10 mM HEPES, 2 mM glutamine, 100 IU/mL penicillin, 100 μg/mL streptomycin and heat-inactivated fetal bovine serum (FCS; Gibco, Life Technologies, Sao Paulo, SP, Brazil) at 10% (v/v). *Leishmania* parasites were grown in Grace’s insect culture medium supplemented with penicillin/streptomycin, 10%–20% FCS and 5 mg/L haemin (designated as Grace-Leish medium). The culture media and supplements were bought from Sigma Chemical Co., St Louis, MO, USA.

All in vitro and most in vivo experiments were done with axenically grown *L. major* promastigotes (MHOM/IL/80/Friedlin clone) maintained in vitro for a maximum of six passages before resolation from infected BALB/c mice. *L. braziliensis* axenic promastigotes (strain RPL5, isolated from patients in the central-west region of Brazil and donated by Dr Milton A. P. Oliveira, University of Goiânia, Goiás, Brazil) were used to infect interferon-γ-knockout (IFN-γ-KO) C57BL/6 mice.

GSNO synthesis

GSNO was synthesized by the equimolar S-nitrosation reaction of reduced glutathione (Sigma) with acidified (HCl) sodium nitrite (Sigma), under stirring, in an ice bath for 40 min, protected from light with aluminium foil. GSNO formed in the reaction was precipitated with acetone, vacuum filtered, washed with cold water and acetone and freeze-dried for 18 h. The reddish GSNO crystals obtained were stored at −20°C and used to prepare fresh buffered solutions at the desired concentrations.

Infection of THP-1 cells with *L. major* and in vitro treatment with GSNO

THP-1 cell cultures were pre-treated with GSNO (100–300 μM) overnight before infection. The cells were then washed twice (280 g/8 min/15°C) in RPMI + 1% FCS and resuspended in RPMI + 20% FCS to 3.3 × 10^6 cells/mL. Stationary-phase *L. major* promastigotes grown in Grace-Leish medium were washed twice (2000 g/8 min/15°C) in RPMI + 1% FCS and resuspended in RPMI + 20% FCS. Each well of 48-well culture plates received 300 μL of THP-1 suspension and 100 μL of parasite suspension containing 1 × 10^7 parasites (ratio parasites:cell, 10:1). The plates were incubated for 4 h at 37°C and 5% CO2. To remove extracellular parasites, the plates were washed twice in RPMI + 1% FCS by centrifugation at 280 g and the suspension was submitted to a 10 s hypotonic shock with distilled water followed by isotonic reconstitution; the cells were then resuspended in RPMI + 1% FCS to which GSNO (100–300 μM) or amphotericin B deoxycholate (Cristalial, Campinas, Sao Paulo, Brazil) (2 × 10^-3 μM) was added. This moment was considered as time zero of the experiment. GSNO was added again to the cultures 48 h later. At the low concentration of FCS (1%) in RPMI, the THP-1 cells remain viable but do not significantly divide. The cells were harvested at 0, 24, 48, 72 and 96 h of culture, diluted, transferred to cytospin tubes and cytocentrifuged onto glass slides (100 g, 4 min and 23°C). The preparations were stained by indirect immunofluorescence to detect the parasites and with the stain 4′,6-diamidino-2-phenylindole (DAPI) (Sigma) to counterstain the cellular nuclei (detected in the next section). The number of infected cells and the number of parasites were counted in ≥200 cells per slide from randomly captured fields. The index of infection (percentage of infected cells × mean number of parasites per cell) was calculated and the results expressed as the mean and standard error of the mean (SEM) from triplicate slides. GSNO concentrations were tested in the range of 100–400 μM for toxicity to cultured THP-1 cells by the trypan blue exclusion method. At up to 300 μM, the viability of THP-1 24 h cultures was between 85% and 95% compared with untreated cultures; by 96 h of culture, all cultures (including the untreated) had 75%–80% viable cells. Concentrations ≥350 μM were found to be more toxic.

Parasite staining and detection of S-nitrosated proteins by immunofluorescence

The slides with the spun cells were fixed in chilled methanol for 3 min, washed in PBS (0.01 M phosphate-buffered 0.15 M NaCl) and the cell-rich area was covered with pooled sera (diluted 1:5 in PBS) obtained from *L. major*-infected mice. After 30 min incubation at room temperature, the
slides were washed three times by immersion in PBS and covered with FITC-labelled goat antimouse immunoglobulin (Ig) (Amersham, GE Healthcare of Brazil, SP, Brazil) to detect the parasites and with the fluorescent stain DAPI to stain the nuclei. After 30 min incubation, the slides were washed in PBS and glass coverslips were mounted using Mowiol (Calbiochem, Merck Millipore, MA, USA) containing 0.1% p-phenylene-diamine dichloride (Sigma). The slides were observed under a fluorescence microscope (Nikon Eclipse E-600), photographed at ×40 magnification and the images were captured by a computer and saved for cell and parasite counting.

In order to detect 5-nitrosated proteins, the slides were prepared in a cytocentrifuge as above and processed as previously described.13 They were fixed and permeabilized for 30 min at 4 °C in a solution of 4% paraformaldehyde containing 0.2% Triton-X. In sequence, the slides were washed twice in PBS and incubated for 1 h at 4 °C with blocking solution (5% normal goat serum, 3% BSA and 0.2% Triton-X in PBS). The slides were washed twice in PBS and covered with the first antibody (Ab), rabbit anti-S-nitrosocysteine (Sigma), adequately diluted in PBS or with its control, normal rabbit serum, and incubated overnight at 4 °C in a humid box. After two washings in PBS, the slides were covered with serum obtained from L. major-infected mice (or with normal mouse serum as control) diluted in PBS and incubated for 30 min at 4 °C. After three washes in PBS, the slides were incubated for 30 min at 4 °C with Alexa Fluor 488-labelled goat antirabbit Ig (Santa Cruz Biotechnology, CA, USA) and FITC-labelled goat antimouse Ig (Caltag Laboratories, Burlingame, CA, USA) antibodies diluted in PBS. Following three PBS washes, the slides were stained with diluted DAPI, washed and mounted and photographed at ×60 magnification.

Infection of mice with L. major or L. braziliensis and treatment of the infected animals

Infections with L. major were carried out in female BALB/c mice aged 4–6 weeks. The mice had the lower dorsal region shaved and were inoculated 48 h later in the dermis with 1 × 10^7 stationary-phase L. major promastigotes suspended in 50 μL of PBS. When most animals had developed a single open ulcer of 2–3 mm diameter (5–6 weeks of infection), treatment was started. Groups of six to eight mice were treated topically with 200 μL of GSNO (50, 100 or 150 mM) diluted in PBS applied with a micropipette directly on the ulcer once a day. Other groups of mice received AMB at 1 μg/g body weight iv, three times per week. Control groups were similarly handled and received only the diluent. Treatments were carried out for a period of 5 weeks.

The lesion width was measured twice a week with a calliper; two measurements at right angles were taken and multiplied to express the estimated area of the lesion. The Δ lesion size was calculated for each mouse and expresses the variation in the size of the lesion compared with its origin- size when treatment was started. Δ lesion size was calculated as the lesion area on day x minus the lesion area when treatment was started. The means and SEM of each group of six to eight mice are presented.

Infections with L. braziliensis were carried out by injecting 2 × 10^7 motile promastigotes of the RPL5 strain (derived from 5-day-old axenic cultures) intradermally in female IFN-γ−/− KO C57BL/6 mice. Lesions became ulcerated 2–3 weeks after inoculation and treatment was started 1–2 weeks later for a period of 4 weeks.

All procedures involving animals were approved by the ICB/USP Committee on the ethical treatment of research animals.

Quantifying parasites in the lesions

After the lesion treatment was finished, the mice were sacrificed for aseptic skin biopsy and draining lymph node (LN) removal. A 10 mm diameter fragment containing the lesion was removed using a skin punch biopsy. Quantifying the parasites was done by the technique of endpoint dilution.134 Briefly, the tissues were minced and homogenized in Grace-Leish medium containing 20% FCS and haemnin in plastic tubes followed by serial dilutions in the same medium. From each dilution tube, triplicate cultures were dispensed in flat-bottomed 96-well plates. Cultures were inspected daily under an inverted microscope and scored for the appearance of motile promastigotes for 7 days. The log_{10} of the reciprocal of the last dilution yielding Leishmania was used as an estimate of the parasite load in the organs.

It should be noted that the endpoint dilution technique yields estimates and not absolute numbers of parasites present in the original cell suspensions. In fact, the serial dilutions of the parasite-containing cell suspensions and their subsequent culture may originate estimates that significantly exceed the number of parasites present in the original tissue sample, in spite of the care taken in performing the assays. In our experiments, the samples from the experimental and respective control groups were processed for endpoint dilution on the same day in order to minimize assay variations and enable comparative statistical analysis between groups.

Statistics

The data are presented as means accompanied by their SEM. The GraphPad Prism 4 statistical program (GraphPad Software Inc., San Diego, CA, USA) was used to analyse the data by analysis of variance with repeated measurements; P<0.05 was considered as significant.

Results

GSNO inhibits L. major growth in human THP-1 macrophage cultures

Treatment with GSNO of L. major-infected THP-1 cultures caused a marked reduction in the infection index at 24 h of culture that was comparable to the effect of AMB (Figure 1). However, by 48 h the infection index in GSNO-treated cultures had risen in comparison with that of 24 h, suggesting that GSNO had either been consumed or lost its activity. The readition of GSNO to the cultures (at 48 h

![Figure 1. Effect of GSNO on the parasitism of THP-1 cells infected with L. major. THP-1 cells were incubated for 4 h with L. major stationary-phase culture promastigotes (10 parasites per cell) and washed. At this point (0 h of infection), the cultures received GSNO (300 μM) or amphotericin B (2 × 10^{-3} μM) (both added again at 48 h). At the indicated timepoints, the cells were processed for fluorescence staining. The infection index was obtained by multiplying the percentage of infected cells by the mean number of parasites per infected cell in a given culture. The means and SEM of triplicate cultures are shown. The data are from a representative experiment out of three that were performed with similar results. *, P<0.05 compared with untreated cultures; **, P<0.05, GSNO versus amphotericin B.](https://academic.oup.com/jac/article-abstract/68/11/2561/828656)
counted from time zero) resulted anew in a reduction in the infection index by 72 h. By 96 h of culture, the infection index of GSNO-treated cultures did not differ from that obtained in AMB-treated cultures.

Staining of GSNO-treated cultures with antinitrocysteine Ab indicates the presence of nitrated proteins in the cytoplasm of THP-1 host cells and colocalized with intracellular L. major amastigotes

Because GSNO is added to the extracellular milieu of the cells infected with Leishmania and the parasites reside in intracellular vacuoles, it was of interest to know whether GSNO could reach the parasites lying inside the organelles. The antibody antinitrocysteine detects proteins that underwent S-nitration at the cysteine residue. The preparations were simultaneously stained with red Alexa-labelled antinitrocysteine antibody and FITC-labelled anti-Leishmania antibody and DAPI to stain the cell nuclei (Figure 2). The pattern of fluorescence staining obtained for the red antinitrocysteine antibody indicates the presence of S-nitrated proteins in the hosts cell cytoplasm, whereas the parasites stain green. By merging the photos of the same field obtained with the appropriate filters for red or green/blue fluorescence, it is possible to observe that there is red fluorescence staining coincident with many intracellular amastigotes.

Topical treatment with GSNO markedly reduced the size of the L. major skin ulcer in BALB/c mice and reduced the number of parasites present in the lesion

The topical application of GSNO to the L. major skin ulcer markedly reduced progression of the lesion; after 5 weeks of treatment, the lesions were much smaller than those that had developed in PBS-treated control mice (Figure 3a and b). Dose–response experiments showed that the concentration of 150 mM was not more effective than 50 mM (Figure 3a) and had a slight irritating effect, because the animals immediately tried to bite or rub the lesion. The concentration of 100 mM did not cause irritation and was very effective at reducing lesion size over a period of 5 weeks (Figure 3b), whereas it took longer for the treatment with 50 mM GSNO to reduce the lesion to sizes similar to those obtained with 100 mM GSNO (data not shown). The group of mice treated with 100 mM GSNO was compared with mice treated with AMB; as shown in Figure 3(b), the marked wound-healing effect of GSNO was comparable to that of AMB alone and significantly different from the PBS-treated control group. The estimated mean number of parasites in the lesions removed from 100 mM GSNO-treated mice was significantly lower when compared with those from PBS-treated controls, but still parasites persisted in the cutaneous lesions in all cases (Figure 3c). Two other independent experiments in mice topically treated with 50 mM GSNO confirmed the reduction of parasite loads in the skin lesion (data not shown). However, quantifying the parasites in the draining LN (Figure 3d) did not yield any reduction in either the AMB-treated group or in the GSNO-treated group in comparison with the PBS-treated control group.

Topical treatment with GSNO was also effective at reducing the size of the skin ulcer caused by L. braziliensis in IFN-γ-KO mice

Because L. braziliensis is the main cause of LCL in Brazil, it was of interest to verify whether topical GSNO treatment would also have an ulcer-healing effect in this infection. Two independent experiments were performed in IFN-γ-KO C57BL/6 mice infected in the dorsal skin with L. braziliensis. These mice developed a lesion that in ~2 weeks became a shallow ulcer that quickly enlarged and became adherent to the underlying muscle. In both experiments (Figure 4, Exp 1a and Exp 2a), topical treatment
with GSNO markedly suppressed the growth of the L. braziliensis lesion but did not heal the cutaneous ulcer. However, the beneficial effect of GSNO treatment was comparable to that obtained with iv-administered AMB, which also failed to heal the lesion (Figure 4, Exp 1a and Exp 2a). The characteristics of the skin lesion made it impossible to obtain a standardized biopsy of tissue; therefore, quantifying the parasite load was done only in the draining LN. As shown in Exp 1(b), a significant and comparable decrease in the parasitism of LNs was seen in the groups treated with GSNO or AMB in comparison with the PBS-treated control group. However, such a reduction did not happen in either treatment group in the experiment shown as Exp 2(b). It should be noticed that, in this experiment, the parasite loads of LNs were several orders of magnitude higher than those observed in Exp 1.

Discussion

We report on the activity of GSNO on Leishmania parasites causing cutaneous leishmaniasis. Initially, we have shown that GSNO inhibited the intracellular growth of L. major amastigotes in cell culture. Next, GSNO was used to topically treat the ulcerated skin lesion of infected mice. The effect on BALB/c mice infected with L. major and on IFN-γ-KO C57BL/6 mice infected with L. braziliensis was a marked reduction of lesion growth.

In relation to the in vitro inhibition of intracellular amastigote survival and growth by GSNO, the question arose whether the parasite itself would be a target of the toxic effect of GSNO or whether it would indirectly suffer from the GSNO inhibitory action on the host cell’s metabolism.

The toxic effects of NO donor molecules can be due to the release of free NO and its subsequent reactions and/or direct S-nitrosation of parasite or host cell proteins.27,28 There is indication that the leishmanicidal activity of GSNO on promastigotes is due mainly to the transnitrosation of proteins.29 We found that the cytoplasm of the host cells and also intracellular parasites stained positive for the presence of S-nitrosocysteine groups, indicating a transnitrosation action on the host cell and also on the intracellular parasites lying inside the parasitophorous vacuoles. Several cytotoxic targets of NO or NO donors have been identified in Leishmania axenic culture forms, such as the inhibition of glucose, proline and adenine incorporation and of the enzymes glyceraldehyde 3-phosphate dehydrogenase, aconitase and cysteine proteinase activities.27-30,36,37 In addition, the exposure of L. amazonensis axenic parasites to several NO donors triggers apoptosis-like DNA fragmentation.16 Axenic amastigotes are less susceptible than promastigotes to nitroprussate-induced death that was attenuated by glutathione, suggesting multiple oxidative mechanisms for that molecule.37 In addition, the various toxic mechanisms of GSNO are also effective against Acanthamoeba castellanii and keratitis-inducing bacteria.38,39

Topical treatment with GSNO of the L. major ulcer was nearly as effective as systemic AMB at reducing the size of and healing L. major skin lesions of mice. The dose of AMB chosen for the systemic

Figure 3. Effect of topical treatment with GSNO of L. major-infected BALB/c mice on ulcer size and parasitism of the lesion and draining lymph node. Mice were infected in the dermis of the low dorsum with 1 × 10^7 promastigotes. Treatment was started when the ulcer was 2–3 mm in diameter. Once a day, 200 μL of PBS with GSNO at 50 or 150 mM (a) or 100 mM (b) was applied on the ulcer; control groups received the same volume of PBS only. Another group of mice (b) received amphotericin B (1 μg/g body weight) iv, three times per week. Graphs (a) and (b) show the variation (Δ) of the ulcer size that was measured at the end (5 weeks) of the treatment minus the size at its start. The parasite loads for the 100 mM treatment dose in the skin lesion (c) and in the draining lymph node (d) are estimates obtained by the endpoint dilution technique. They are expressed as log10 of the reciprocal of the last dilution (of the organ macerate) positive for parasites. All graphs show the mean and SEM of six mice per group. *, P<0.05 in comparison with the control PBS group. #, Comparison of PBS+50 mM GSNO versus PBS+150 mM GSNO: significant, P<0.05. Amphotericin versus PBS+100 mM GSNO, not significant.
treatment of mice (1 μg/g body weight iv, three times per week) was comparable to the dose indicated by the Brazilian Ministry of Health for the treatment of adult human patients with cutaneous/mucosal leishmaniasis (1 mg/kg body weight, not to exceed the accumulated dose of 1 g) (http://portal.saude.gov.br/portal/arquivos/pdf/manu_leishman.pdf). AMB is the second drug of choice in Brazil for antimony-resistant patients, because of the high cost of AMB liposomal formulations.6

The skin-healing effect we observed for topical GSNO application was comparable to that described in experimental treatment with paromomycin ointment.60 We observed significant reduction of the estimated parasite loads in the skin lesion site, but not in the draining LN. The persistence of parasites in healed lesions after topical therapy was observed by other authors, who stressed its importance in maintaining concomitant immunity to reinfection in a mouse model.41

Although GSNO was shown to be leishmanicidal to intracellular amastigotes in THP-1 cell cultures and also to reduce the parasite load in L. major lesions, it is possible that its skin-healing effects do not only result from the diminished parasite load. In fact, GSNO has known wound-healing properties and has been incorporated into hydrogels in order to accelerate skin repair and/or cicatrization.52,43 The size of LCL lesions in human patients correlates with higher tumour necrosis factor (TNF) secretion levels44 and local inhibition of cytokine synthesis pathways by NO or by nitrosation could be an additional mechanism of wound healing. In this context, recent work has focused on the importance of wound skin repair genes that influence the outcome and resistance to cutaneous leishmaniasis in mice.14,45

Because L. braziliensis is a common aetiology of LCL, we tested topical GSNO treatment on infected IFN-γ-KO mice and confirmed a marked reduction of the skin lesion. IFN-γ-KO mice were chosen as hosts for L. braziliensis because this parasite fails to cause significant ulcerative lesions in immunocompetent mice.31 IFN-γ-KO mice are extremely susceptible to infection with L. braziliensis, because of the major roles of IFN-γ as a co-stimulator of TH1-type immune responses and as a macrophage activator.15,31 IFN-γ-KO mice have reduced natural killer cell activity and the macrophages produce very low amounts of molecules that have microbicidal activities, such as NO and reactive oxygen species; inflammatory cytokines, such as TNF-α, interleukin-1 and interleukin-6, are also reduced.46 Topical application of an NO donor molecule to the lesion may partially compensate for the shortage of NO and promote healing, but it would not totally compensate for the other deficient microbicidal mechanisms of these immunodeficient hosts. However, although neither GSNO nor iv AMB completely healed the ulcer (as seen for L. major-infected BALB/c mice), there was significant improvement, suggesting that topical GSNO could be beneficial even in immunocompromised patients. It should be stressed that L. braziliensis skin infection of IFN-γ-KO mice has different characteristics from those observed in L. major-infected BALB/c mice. Namely, the lesion ulcerates
earlier and rapidly enlarges in L. braziliensis-infected IFN-γ-KO mice and is shallower and adherent to underlying tissues. For this reason, obtaining uniformly sized skin biopsies for parasite quantification became impossible. Nevertheless, the results indicate that topical treatment with GSNO may also have a beneficial effect in lesions caused by L. braziliensis, the most prevalent cause of LCL in South America.

In conclusion, our results on the successful topical therapy of cutaneous leishmaniasis with GSNO in the mouse model provide the experimental basis for a possible trial of this molecule in the treatment of LCL.

Acknowledgements

The authors thank Dr Telma T. Zorn (Instituto de Ciências Biomédicas da Universidade de São Paulo—ICB/USP) and Dr M. Julio M. Alves (Instituto de Química/USP) for the use of the fluorescence photomicroscopes, Dr Tania Katzin (ICB/USP) for the gift of the Alexa Fluor-labelled Ab and Dr Lorena Bavia (Immunology, ICB/USP) for her assistance with the treatment of mice.

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). I. S. F. C. received a M. Sc. fellowship from FAPESP (identification number (IN) 07/01776–1). G. F. P. S. received PhD and Postdoctoral fellowships from FAPESP (IN 07/55877–3 and IN 11/50514–5, respectively). I. A. A. and M. G. O. acknowledge support from CNPq (IN 521103/2006-9 and IN 309390/2011-7, respectively).

Transparency declarations

None to declare.

References

