Stability and antiviral activity against human cytomegalovirus of artemisinin derivatives

Alyssa Flobinus1†, Nicolas Taudon2,3†, Marc Desbordes2,3, Béatrice Labrosse4,5, François Simon1,4,6, Marie-Christine Mazeron1,4,6,7 and Nathalie Schnepf1,4,7*

1Laboratoire de Microbiologie, APHP, Hôpital Saint-Louis, Paris 75010, France; 2Laboratoire de Bioanalyse et Pharmacocinétique, UMR-MD3 Infections Parasitaires, Aix-Marseille Université, Institut de Recherche Biomédicale des Armées, Marseille, France; 3Centre National de Référence du Paludisme, Marseille, France; 4Inserm, UMR941, Paris 75010, France; 5Institut Universitaire d’Hématologie, Université Paris Diderot, Hôpital Saint-Louis, Paris 75010, France; 6Université Denis Diderot, Paris, France; 7Laboratoire associé au CNR cytomegalovirus, Paris 75010, France

*Corresponding author. Laboratoire de Microbiologie, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75010 Paris, France. Tel: +33-1-42499470; Fax: +33-1-42499200; E-mail: nathalie.schnepf@sls.aphp.fr

†These authors equally contributed to this work.

Received 24 May 2013; returned 3 July 2013; revised 25 July 2013; accepted 31 July 2013

Objectives: Artesunate, a derivative of dihydroartemisinin, itself a product of artemisinin, inhibits the replication of cytomegalovirus in vitro. In vivo, artesunate undergoes rapid conversion into the active metabolite dihydroartemisinin. The in vitro stability of the compounds and the antiviral activity of dihydroartemisinin are of great concern for the interpretation of in vitro testing. The aim of the study was to measure artesunate conversion into dihydroartemisinin in culture medium and to evaluate the stability and antiviral activity of artemisinin derivatives, according to culture conditions.

Methods: Conversion of artesunate into dihydroartemisinin was measured in culture medium with or without fetal calf serum, in the presence or absence of fibroblast monolayers, at different times. The stability of artemisinin derivatives was determined in serum-enriched medium. Concentrations of each compound inhibiting viral DNA synthesis by 50% were determined in fibroblasts cultured in serum-free or serum-enriched medium, after addition of compound as a single dose or fractional doses.

Results: Conversion of artesunate into dihydroartemisinin was measured in culture medium with or without fetal calf serum, in the presence or absence of fibroblast monolayers, at different times. The stability of artemisinin derivatives was determined in serum-enriched medium. Concentrations of each compound inhibiting viral DNA synthesis by 50% were determined in fibroblasts cultured in serum-free or serum-enriched medium, after addition of compound as a single dose or fractional doses.

Artemisinin derivatives were shown to be unstable in vitro and their addition as fractional doses could partly compensate for this instability. Importantly, the cellular physiological condition was a determinant of their antiviral activity.

Keywords: antiviral therapy, metabolism, HPLC, drug susceptibility

Introduction

Human cytomegalovirus (HCMV) is a widespread opportunistic pathogen in immunocompromised individuals, including allograft recipients and patients with AIDS. It remains the leading cause of congenital viral infections and may be responsible for severe disease leading to death or serious neurodevelopment sequelae in infants infected in utero. Antiviral drugs currently available in clinical practice include ganciclovir (and its prodrug valganciclovir), foscarnet and cidofovir, which all target the viral DNA polymerase. Their clinical use is limited by severe adverse side effects and the possible emergence of resistance.2 Artesunate, an antimalarial drug, has been shown to inhibit the replication of both HCMV reference strains and clinical isolates susceptible or resistant to ganciclovir in fibroblasts and U373MG astrocytoma cells.2–7 The intensive use of artesunate in patients with malaria has demonstrated its high safety and tolerability profile.8,9 Thus, it has been proposed as an alternative to the currently available antiviral drugs in...
patients failing therapy.1,10,11 Artesunate can be administered orally, intramuscularly, intravenously and by the rectal route.12,13

Artesunate is a hemisuccinate derivative of dihydroartemisinin, itself obtained by the reduction of artemisinin, a natural sesquiterpeno-lactone extracted from \textit{Artemisia annua}, a Chinese herbal medicine used as a traditional antimalarial.14–16 The pharmacophore of artemisinin derivatives is a 1,2,4-trioxane ring incorporating an endoperoxide bridge essential for antimalarial activity.17

Within the infected erythrocyte, the reduction of the peroxide bridge, favoured by ferrous iron (Fe2+), and the generation of carbocentred radical molecules and reactive oxygen intermediates are thought to be crucial to the antimalarial activity.17–19 In addition to their antimalarial activity, artemisinin and its derivatives also have anticancer properties.13,20–23

The \textit{in vitro} antiviral activity of artemisinin derivatives was described in 1982.24 Their mechanism of action on the replication of HCMV is incompletely known. Artesunate inhibits the \textit{in vitro} replication of HCMV at an early stage, by mechanisms linked to cellular activation pathways.4,5 The products of the major immediate early (MIE) IE2 and IE1 genes, which are multifunctional proteins involved in regulating both viral and cellular gene expression, are essential for the progression of the replication cycle.25 Their transcription is driven by the complex and potent MIE promoter (MIEP), which contains binding sites for a diverse set of signal-regulated stimulatory and inhibitory transcription factors. Among these, cellular factors NF-κB and Sp1, which are overexpressed through the initial binding of viral envelope glycoproteins to cellular receptors, activate the MIEP. Artesunate was shown to markedly reduce both the protein level and the binding activity of these virus-induced cellular factors and to inhibit IE2 expression.5,6 However, He et al.26 did not find a significant effect of artemesin on MIE gene transcripts. The peroxide bridge is thought to play a role in anti-HCMV activity, as (i) suppression of HCMV replication is enhanced by the addition of Fe2+,5,6 (ii) dimers derived from artesunic acid and dihydroartemisinin half-lives are <15 and 60 min, respectively.13,28,30 Thus, artemesin acts as an ester prodrug and its main metabolite, dihydroartesin, is considered the active compound \textit{in vivo}. Unexpectedly, the \textit{in vitro} anti-HCMV activity of dihydroartemisinin was shown to be much lower than that of artesunate1 and in spite of a chemical structure close to that of artesunate, inconsistent results concerning artemisinin anticytomegaloviral activity have been reported by Arav-Boger et al.1 and Chou et al.3 The basis for all these discrepancies is unknown. Artemisinin derivatives are known to be unstable compounds, especially dihydroartemisinin.14 Ex \textit{vivo}, artemesin can also form dihydroartemisinin through chemical hydrolysis and plasma esterase-mediated hydrolysis. In culture medium, the stability of the artemisinin derivatives as well as the level of artesunate conversion into dihydroartemisinin is unknown, however, they are of major concern for the interpretation of \textit{in vitro} antiviral activity testing. The aims of the study were to measure artesunate conversion into dihydroartemisinin in culture medium as well as hydrolysis catalysed by fetal calf serum (FCS) esterases and to evaluate the stability and antiviral activity of artemisinin derivatives in different experimental conditions.

Materials and methods

Cells and viruses

Human lung fibroblasts (MRC-5; FreshFrozenCells®, Diagnostics Hybrids)—purchased from bioMérieux-Arge\`ne (Verniolles, France)—were grown in minimum essential medium (Invitrogen, Saint-Aubin, France) containing variable amounts of inactivated FCS (Pan Biotech, distributed by Dutscher, Brumath, France). FCS inactivation was achieved by heating at 56°C for 30 min.

Reference HCMV strain AD169 (ATCC VR-538; Rockville, MD, USA) and a clinical isolate (VI1210) susceptible to antiviral drugs were propagated in MRC-5 cells.

Compounds

Ganciclovir, artemesin, dihydroartemisinin and artemisinin were purchased from Sigma (Saint-Quentin Fallavier, France). Ganciclovir was prepared as a 10 mM aqueous solution. Artesunate, dihydroartemisinin and artemisinin were dissolved in DMSO to constitute 100 mM solutions. All compound stocks were stored at −80°C.

Antiviral assay

Antiviral activity was assessed by measuring viral DNA synthesis in the presence and the absence of the drug after 4 days of incubation. The drug concentration inhibiting viral DNA synthesis by 50% (IC\textsubscript{50}) was determined by a previously described real-time PCR-based assay.2 Briefly, MRC-5 fibroblasts grown as monolayers in 24-well plates were inoculated with cell-associated virus (5000 cells per well) or cell-free virus (multiplicity of infection 0.1). After virus adsorption, cells were fed with medium containing serial 2-fold dilutions of each test compound. Each drug concentration was tested in quadruplicate.

To test the influence of the FCS concentration upon drug antiviral activity, experiments were carried out in parallel with culture medium containing no serum, 2% FCS or 10% FCS (inactivated or not).

To test the influence of the mode of drug addition on the cell cultures, experiments were conducted in parallel to compare single dosing (as described above) with fractional dosing. Fractional dosing was performed as follows: after virus adsorption, cells were fed with medium containing one-quarter of the final dose of the test drug and three additional fractional doses were consecutively added to the cell culture medium at 24, 48 and 72 h post-infection in a 10 μl volume for a total medium volume of 1 ml per well.

After 4 days of incubation, the cells were lysed. The number of HCMV genomes was quantified in cellular lysates by real-time PCR. Determination of the IC\textsubscript{50} values and statistical analysis were carried out using the computer package Pk-fit.32 Growth inhibition \((I)\) and the corresponding drug concentrations \((C)\) were fitted according to a sigmoid model, described as: \(I = \left[\left\{I_{\text{max}} - C^*\right\} / \left(C^* + IC_{50}\right)\right]\), where \(I_{\text{max}}\) is the maximum growth inhibition and \(g\) is the sigmoid factor of the curve.

Cytotoxicity assay

The cellular cytotoxicity of the drugs was measured using the CytoTox96® Non-Radioactive Cytotoxicity Assay (Promega, Charbonnieres, France) as reported by Effert et al.4 The assay determines lactate dehydrogenase (LDH) activity in the residual cells after incubation with increasing concentrations of the test compound. Briefly, fibroblasts were grown in 24-well plates to confluence as for antiviral assays and then incubated at 37°C for 4 days in culture medium containing serial dilutions of artesunate,
Dihydroartemisinin, artemisinin or ganciclovir. The supernatants were discarded and then the cells were rinsed in PBS and lysed in 100 μL per well of the lysis buffer provided in the kit. After incubation for 45 min at 37°C, cellular debris was removed by centrifugation and 10 μL of each lysate was added to 50 μL of PBS in the wells of a 96-well flat-bottomed plate. A volume of 50 μL of substrate was added to each well and the mixtures were incubated for 30 min at room temperature in the dark. Then, 50 μL of stop solution was added to each well and the colour reaction was quantified using an ELISA reader (optical density (OD) at 490 nm).

Effect of FCS concentration on cellular metabolism

To evaluate the effect of the serum concentration on cell metabolism, LDH activity was measured as indicated above in mock-infected cells cultured for 4 days in drug-free medium containing 0%, 2% or 10% inactivated FCS. LDH activity was also measured in cell culture supernatants by using the CytoTox96® Non-Radioactive Cytotoxicity Assay. Supernatants (50 μL per well of a 24-well plate) were transferred to the wells of a 96-well flat-bottomed plate and mixed with an equal volume of substrate. The mixtures were incubated for 30 min at room temperature in the dark before recording absorbance at 490 nm. The results were expressed in OD units (mean ± SD) of the ODs obtained in three independent experiments were calculated.

Effect of FCS concentration on viral genome synthesis

Fibroblast monolayers grown to confluence in 24-well plates were incubated with strain AD169 and then incubated in parallel in the presence of 2% or 10% inactivated FCS, or in the absence of FCS. After 4 days of incubation in the three culture conditions tested, cells were lysed and the number of HCMV genomes was quantified in cellular lysates by real-time PCR. The significance of the differences in genome synthesis for the three percentages of FCS was evaluated using the Friedman test (non-parametric repeated measure ANOVA).

Determination of artemisinate and dihydroartemisinin in culture medium

Dilutions of artesunate (1.88 and 30 μM) were prepared in culture medium containing 0% or 10% (inactivated or not) FCS. For each condition, a 600 μL aliquot was immediately stored at −80°C. Dilutions of artemisate were distributed in the wells of 24-well plates free from cells or containing confluent fibroblast monolayers. The plates were incubated at 37°C and culture medium aliquots were withdrawn after 30 min of incubation and then every hour until 8 h and every day until 4 days. The aliquots were immediately stored at −80°C.

Concentrations of artesunate and dihydroartemisinin in culture medium aliquots were measured by HPLC with electrochemical detection. The procedure involved solid-phase extraction on an Oasis MCX column eluate was monitored in reductive mode at −800 mV (Decade II, Antec Leyden, The Netherlands). Linearity over the concentration ranges of 5–500 and 10–500 ng/mL was obtained for dihydroartemisin and artemisate, respectively. The back-calculated concentrations of the calibration standards were within ±10% of the nominal value with a coefficient of variation value of <10%. Data were acquired and analysed using Chromleon® 6.80 software (Dionex Corporation, Sunnyvale, CA, USA). The impact of the medium composition (i.e. presence of FCS and/or cells) on the stability of artemisate was compared by using area under the concentration versus time curves (AUCs) from 0 to time t. AUC_{0→t}, was determined according to the trapezoidal rule. The degradation rate (ke) was obtained as the slope of the linear regression of the log-transformed concentration versus time data in the terminal portion of the curve. The half-life (t_{1/2}) was estimated from the ke constant using t_{1/2} = 0.693/ke. One-way ANOVA and a simple contrast test were used to compare experimental conditions. A P value <0.05 was considered as statistically significant.

In addition, to assess the stability of artemisinin derivatives, media containing artemisate, dihydroartemisin and artemisinin (1.88 μM) and 10% inactivated FCS were incubated at 37°C without fibroblasts. Drug concentrations were measured at different incubation times.

Results

Antiviral activity of artesunate, dihydroartemisinin and artemisinin according to FCS concentrations

The results are presented in Table 1. AD169 replication suppression by artemisate was significantly reduced in the absence of FCS.

Table 1. Activity of artemisinin derivatives against HCMV reference strain AD169 and clinical isolate VI1210 according to the percentage of inactivated FCS in the cell culture medium

<table>
<thead>
<tr>
<th>Strain</th>
<th>Drug</th>
<th>IC₅₀ (μM)<sup>a</sup></th>
<th>Comparison between 0%, 2% and 10% FCS<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0% FCS</td>
<td>2% FCS</td>
<td>10% FCS</td>
</tr>
<tr>
<td>AD169</td>
<td>ART</td>
<td>22.19 ± 9.89</td>
<td>5.57 ± 2.91</td>
</tr>
<tr>
<td></td>
<td>DHA</td>
<td>47.06 ± 13.79</td>
<td>22.56 ± 7.22</td>
</tr>
<tr>
<td></td>
<td>GCV</td>
<td>0.65 ± 0.24</td>
<td>0.37 ± 0.21</td>
</tr>
<tr>
<td>VI1210</td>
<td>ART</td>
<td>9.50 ± 7.73</td>
<td>5.17 ± 2.29</td>
</tr>
<tr>
<td></td>
<td>DHA</td>
<td>10.62 ± 7.74</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>GCV</td>
<td>1.37 ± 0.41</td>
<td>ND</td>
</tr>
</tbody>
</table>

ART, artesunate; DHA, dihydroartemisinin; GCV, ganciclovir; ND, not determined.

Ganciclovir was tested in parallel as a control.

^aMeans ± SD from at least four independent experiments.

^bA one-way ANOVA was used to compare the three culture conditions (0%, 2% and 10% FCS) and a Mann–Whitney test to compare culture conditions two by two. Significant P values (<0.05) are indicated in bold.
as compared with suppression in the presence of 2% or 10% inactivated FCS. For isolate VI1210, artesunate IC₅₀ values were significantly lower in the presence of 10% FCS versus 0%. For both strains, dihydroartemisinin activity was also markedly reduced in the absence of FCS, but the difference was significant only for the AD169 strain. Artesunate and dihydroartemisinin were more effective at inhibiting the replication of the clinical isolate VI1210 than the AD169 strain (in medium with 10% FCS, \(P = 0.03 \) and \(P = 0.001 \), respectively). Artemisinin had no antiviral activity and this result was confirmed by testing artemisinin purchased from another source (Sao Kim Pharma Co., Vinh Phuc, Vietnam) (data not shown). For ganciclovir, tested as control, IC₅₀ values for this result was confirmed by testing artemisinin purchased from another source (Sao Kim Pharma Co., Vinh Phuc, Vietnam) (data not shown). For ganciclovir, tested as control, IC₅₀ values for another source (Sao Kim Pharma Co., Vinh Phuc, Vietnam) (data not shown). For ganciclovir, tested as control, IC₅₀ values for this result was confirmed by testing artemisinin purchased from another source (Sao Kim Pharma Co., Vinh Phuc, Vietnam) (data not shown).

Effect of FCS concentration on cellular metabolism

LDH activity was significantly reduced (\(P = 0.001 \)) in serum-starved mock-infected cells (OD = 633.33 \(\pm \) 102.64) as compared with LDH activity in cells cultured in the presence of 2% FCS (OD = 792.50 \(\pm \) 79.49) or 10% FCS (OD = 1431.17 \(\pm \) 62.36). LDH activity was unchanged in supernatants, whatever the FCS concentration in the culture medium (data not shown).

Effect of FCS concentration on viral genome synthesis

After 4 days of incubation of the infected cells in serum-free or serum-enriched medium (2% or 10%), genome synthesis was measured in cellular lysates in six independent experiments. The mean number of HCMV genomes was 10.15 \(\pm \) 0.56 \(\log_{10} \) copies/mL in the absence of FCS, and 9.99 \(\pm \) 0.67 \(\log_{10} \) copies/mL and 9.67 \(\pm \) 0.72 \(\log_{10} \) copies/mL in the presence of 2% and 10% FCS, respectively (\(P = 0.068 \); data not shown).

Stability of artemisinin derivatives in medium

The degradation of artemisinin followed first-order kinetics independently of the experimental conditions (concentration of FCS in culture medium, presence or absence of fibroblasts) and the initial concentration of the compound (1.88 or 30 \(\mu \)M). For an initial artemisinin concentration equal to 30 \(\mu \)M in medium supplemented with 10% inactivated FCS, the AUC values were 662 \(\pm \) 15 and 532 \(\pm \) 18 h \(\cdot \) \(\mu \)M without and with fibroblasts, respectively (Figure 1). At 1.88 \(\mu \)M, these values were 44.3 \(\pm \) 2.03 and 33.4 \(\pm \) 2.1 h \(\cdot \) \(\mu \)M, respectively. Thus, the AUC values were 27.6% \(\pm \) 4.0% higher in the absence of cells than in their presence. The corresponding half-life values were 14.4 \(\pm \) 1.8 versus 12.4 \(\pm \) 1.6 h (\(P = 0.019 \)) in the absence and in the presence of cells, respectively.

![Figure 1](https://academic.oup.com/jac/article-abstract/69/1/34/857244)

Effect of addition of artesunate and dihydroartemisinin as fractional doses on antiviral activity

Antiviral assay was performed as described above, except that artemisinin and dihydroartemisinin were not applied as a single dose but as fractional doses (one-quarter of the final dose) consecutively added post-infection for 4 days. The results are shown in Table 2. Comparison between the modes of drug addition was performed in experiments carried out in parallel to rule out variability due to cell passages, inoculum calibration or medium preparation. For AD169, the IC₅₀ values were significantly lower when...
Table 2. Effect on antiviral activity of addition of artesunate or dihydroartemisinin as fractional doses in the culture medium

<table>
<thead>
<tr>
<th>Strain</th>
<th>Drug</th>
<th>IC\textsubscript{50} (\textmu M)^b</th>
<th>Comparison between the two culture conditionsc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>single doseb</td>
<td>fractional dosesb</td>
</tr>
<tr>
<td>AD169</td>
<td>ART</td>
<td>6.13 ± 0.87</td>
<td>4.01 ± 0.60</td>
</tr>
<tr>
<td></td>
<td>DHA</td>
<td>20.17 ± 9.58</td>
<td>2.88 ± 1.88</td>
</tr>
<tr>
<td></td>
<td>GCV</td>
<td>1.48 ± 0.18</td>
<td>2.87 ± 1.10</td>
</tr>
<tr>
<td>VI1210</td>
<td>ART</td>
<td>1.94 ± 1.30</td>
<td>1.22 ± 0.74</td>
</tr>
<tr>
<td></td>
<td>DHA</td>
<td>5.18 ± 2.89</td>
<td>1.49 ± 0.62</td>
</tr>
<tr>
<td></td>
<td>GCV</td>
<td>1.24 ± 0.28</td>
<td>1.69 ± 0.45</td>
</tr>
</tbody>
</table>

ART, artesunate; DHA, dihydroartemisinin; GCV, ganciclovir.

Ganciclovir was tested in parallel as a control.

aDrug addition in the culture medium: as single dose or four fractional doses.

bMeans ± SD from four independent experiments.

cSignificant \(P \) values (<0.05) are indicated in bold.

Numerous studies have shown the ability of artesunate to inhibit HCMV replication \textit{in vitro}.2–7 \textit{In vivo}, dihydroartemisinin is the main artesunate metabolite.28–30 \textit{In vitro}, only a partial artesunate conversion into dihydroartemisinin was observed in tissue culture medium whether FCS was present or not. With or without serum, the sum of the respective concentrations of artesunate and dihydroartemisinin decreased rapidly, suggesting degradation of the molecules due to their intrinsic chemical instability. Dihydroartemisinin is particularly unstable because of the lactole function present in its chemical structure. The transition from conformation \(\alpha \) to conformation \(\beta \) (flip-flip) generates constraints on the endoperoxide bridge, which can then break.14 In the presence of cells, the artesunate concentration in the medium decreased significantly faster than in the absence of cells, whereas dihydroartemisinin concentration did not increase, suggesting weak intracellular uptake of artesunate. Unfortunately, methods to measure intracellular artesunate-derivatives concentrations are not yet available. To date, fibroblast uptake of artesunate has not been studied. An earlier study reported Caco-2 intestinal cell uptake of artesunate by passive diffusion.31 In the present study, the degradation kinetics of dihydroartemisinin and artesunate had similar profiles under all the conditions tested. A striking finding of the study is the influence of the amount of FCS in the tissue culture medium on the antiviral activity of artesunate and dihydroartemisinin. In the absence of FCS, artesunate was shown to inhibit the replication of both reference strain AD169 and a clinical isolate at concentrations higher than those inhibiting replication in the presence of 10% FCS. A similar result was found for dihydroartemisinin when testing the AD169 strain. The addition of FCS enhanced replication suppression. The absence of FCS in the culture medium alters cellular metabolism, as reflected by the reduction of LDH activity without enzyme release in the supernatant in FCS-starved cells compared with cells cultured in the presence of 10% FCS. Furthermore, HCMV DNA synthesis remained unchanged whether or not FCS was present in the culture medium. As the artesunate conversion rate was similar in the presence or the absence of serum, these results confirm that artesunate as well as dihydroartemisinin activity depends on the physiological condition of the infected cell. In contrast, the antiviral activity of ganciclovir, which specifically inhibits the viral DNA polymerase, remained similar in the absence of FCS. \textit{In vivo}, HCMV infects a wide variety of cells. A major problem is therefore whether artesunate is able to inhibit HCMV replication in these target cells, whatever their physiological condition.

Dihydroartemisinin was less efficient than artesunate in suppressing AD169 replication, as shown by their respective IC\textsubscript{50}s. Dihydroartemisinin has been reported to be even less efficient by Chou \textit{et al.},3 who observed 25% inhibition of AD169 replication at 15 \textmu M. Methodological differences between both studies, such as the type of cells, culture time and mode of revelation, might have contributed to these differences. The lower antiviral activity of dihydroartemisinin was unexpected, since once inside the cells artesunate is hydrolysed to dihydroartemisinin and hemisuccinic acid by cellular esterases. However, dihydroartemisinin is more unstable than artesunate in culture medium. Moreover, cellular uptake of dihydroartemisinin is likely lower as its chemical structure lacks a hemisuccinate moiety. Altogether, these facts could explain the less efficient suppression of HCMV replication \textit{in vitro} by dihydroartemisinin. Applying artesunate or dihydroartemisinin in fractional doses increased their antiviral activity. This finding is consistent with the report by Chou \textit{et al.},3 who found artesunate to be more potent against AD169 when applied as fractional doses. However, the difference in the artesunate activity according to the mode of dosing was not significant for the clinical isolate studied, whereas the increase of dihydroartemisinin antiviral activity was marked for both strains. These facts could result from both the high susceptibility of VI1210 to artesunate and the great...
instability of dihydroartemisinin. In contrast, ganciclovir was less efficient in suppressing HCMV replication when applied as fractional doses. These findings suggest that fractional dosing could partly compensate for the instability of the molecules, in particular that of dihydroartemisinin.

The chemical structures of artesunate, dihydroartemisinin and artemisinin are very similar and the three molecules contain the same endoperoxide bridge. However, artemisinin had no antiviral activity. Our results are in agreement with those of Chou et al. However, they are inconsistent with those reported by Arav-Boger et al., who showed similar IC₅₀ values for artesunate and artemisinin. It is unclear why artemisinin does not inhibit the replication of HCMV with the same efficiency as artesunate in the present study. Both molecules had similar stability in the culture medium. Neither HCMV with the same efficiency as artesunate in the present study. Both molecules had similar stability in the culture medium. Neither induced cytotoxicity in the relevant range of concentrations tested for phenotyping. In the cell culture conditions, very poor cell uptake of artemisinin might be implied.

Seven immunocompromised patients have received artesunate to treat HCMV infection. In two of them, viral replication was controlled, whereas in the other five, treatment was ineffective. Six of them received oral artesunate and one intravenous artesunate. Regarding the in vivo short half-lives of artesunate (15 min) and dihydroartemisinin (60 min) and our experimental data, which are in favour of a time-dependent effect of artemisinin derivatives on HCMV, artesunate oral administration twice or thrice daily could be more effective than artesunate administration once daily. Although artesunate has been shown to be well tolerated when administered for the treatment of malaria, the safety of a new administration schedule should be assessed, in particular for long-term therapies. Thus, artesunate, a molecule with anti-HCMV activity, could contribute to a better management of HCMV-related diseases in immunocompromised patients.

Funding
This work was supported by the ‘Institut National de Veille Sanitaire’.

Transparency declarations
None to declare.

References

30 Miller RS, Li Q, Cantilena LR et al. Pharmacokinetic profiles of artesunate following multiple intravenous doses of 2, 4, and 8 mg/kg in healthy volunteers: phase 1b study. Malar J 2012; 11: 255.

