Prevalence of day-care centre children (France) with faecal CTX-M-producing *Escherichia coli* comprising O25b:H4 and O16:H5 ST131 strains

Véronique Blanc1, Véronique Leflon-Guibout2, Jorge Blanco3, Marisa Haenni4, Jean-Yves Madec4, Ghizlane Dahbi3, Brigitte Dunais5, Pascale Bruno5, Azucena Mora3, Cecilia Lopez3, Magali Anastay1, Catherine Branger6, Richard Moreau5, Christian Pradier5 and Marie-Heléne Nicolas-Chanoine2,7,8*

1Service de Biologie, Centre Hospitalier d’Antibes-Juan les Pins, Antibes, France; 2Service de Microbiologie, Hôpital AP-HP Beaujon, Clichy, France; 3Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioxia e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain; 4Agence Nationale de Sécurité Sanitaire (Anses), Unité抗biore?sistance et Virulence Bactériennes, Lyon, France; 5Département de Santé Publique, Centre Hospitalier Universitaire de Nice, Nice, France; 6Service de Microbiologie, Hôpital AP-HP L Mourier, Colombes, France; 7Institut National de la Santé et de la Recherche Médicale, U773, Centre de Recherche Biomédicale Bichat-Beaujon (CRB3), Université Paris Diderot, Paris, France; 8Faculté de Médecine D. Diderot, Paris, France

*Corresponding author. Service de Microbiologie, Hôpital Beaujon, 92110 Clichy, France. Tel: +33-1-40-87-56-06; Fax: +33-1-40-87-05-50; E-mail: mhn.chanoine@bjn.aphp.fr

Received 10 September 2013; returned 21 October 2013; revised 29 November 2013; accepted 10 December 2013

**Objectives:** Determining the prevalence of children in day-care centres (DCCs) carrying faecal extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae and molecularly characterizing those belonging to the *Escherichia coli* species.

**Methods:** Stools were collected from children’s diapers (January–April 2012) in randomly chosen DCCs and plated onto ChromID™ ESBL. Colonies growing on this medium were identified by the Vitek 2® system and tested for antibiotic susceptibility and for ESBL production by the double-disc synergy test. ESBL genotypes were determined as well as phylogenetic groups, ERIC-2 (enterobacterial repetitive intergenic consensus) PCR profiles and sequence types (STs) for the *E. coli* isolates. Serotypes, virotypes, *fimH* alleles, ESBL-carrying plasmids and PFGE patterns were determined for the ST131 *E. coli* isolates.

**Results:** Among 419 children from 25 participating DCCs, 1 was colonized by CTX-M-15-producing *Klebsiella pneumoniae* and 27 (6.4%) by *E. coli*, which all produced CTX-M enzymes [CTX-M-1 (37%), CTX-M-2 (26%), CTX-M-14 (22%), CTX-M-27 (11%) and CTX-M-22 (4%)]. The 27 *E. coli* isolates, 55.5% belonging to group B2, displayed 20 ERIC-2 PCR profiles and 16 STs. The ST131 *E. coli* isolates were dominant (44%), displayed serotypes O25b:H4 and O16:H5, *fimH* alleles 30 and 41 and virotypes A and C. According to the PFGE patterns, one strain of *E. coli* ST131 producing a CTX-M-15 enzyme carried by an IncF F2:A1:B2 plasmid had spread within one DCC.

**Conclusions:** This study shows a notable prevalence (6.4%) of DCC children with faecal CTX-M-producing *E. coli* isolates comprising a high proportion of *E. coli* ST131 isolates, suggesting that these children might be a reservoir of this clone.

**Keywords:** *E. coli*, *fimH*-based subclones, virotypes, plasmids

**Introduction**

In the past decade, there has been a significant increase in the prevalence of extended-spectrum cephalosporin resistance in *Escherichia coli*, owing to the presence of extended-spectrum β-lactamase (ESBL) enzymes. These organisms have become important pathogens of both community-onset and hospital-associated infections on a global scale. Additionally, molecular epidemiology studies revealed that one specific *E. coli* clone, ST131 (where ST stands for sequence type), closely associated with fluoroquinolone resistance and CTX-M-15 production, has spread globally. Two recent studies that analysed the population structure of *E. coli* clinical isolates showed that clone ST131 accounted for 9%–10% of non-ESBL producers and 36%–54% of ESBL producers. Studies focusing on
children showed that ST131  E. coli also caused infections in children. It accounted for 8% of urinary non-ESBL-producing E. coli isolates in children from Australia and for 10.2% of urinary CTX-M-producing E. coli isolates from children attending Texas Children’s Hospital (USA). The major reservoir of human extraintestinal pathogenic E. coli is the human digestive tract. Studies to evaluate the prevalence among healthy subjects of intestinal colonization by ESBL-producing E. coli have been carried out in different parts of the world. The prevalence rate was 5.8%, 6.4% and 7.3% among healthy individuals from Switzerland, Japan and Tunisia, respectively, and 6% among healthy individuals living in the Paris area. Much higher prevalence rates were observed in Thailand (29%–50%), China (50%) and Egypt (63%). All of these studies involved healthy adults. Studies involving healthy children are scarce. Pallecchi et al. detected 1.7% of healthy children from Peru and Bolivia with faecal carriage of ESBL-producing E. coli in 2005. Kaarme et al. showed that 2.9% of healthy Swedish preschool children had ESBL-producing Enterobacteriaceae in their faeces in 2010. Relatively higher prevalence rates, i.e. 4.6% and 5.2%, were observed in children attending community paediatrician consultations in three French regions and in children hospitalized for acute diarrhoea in southern France, respectively. The present study was also conducted in southern France, but among children attending day-care centres (DCCs). The aims of the study were to determine the prevalence of DCC children who carry ESBL-producing Enterobacteriaceae in their digestive tract and to thoroughly characterize the faecal ESBL-producing E. coli isolates detected among this particular population within the community.

Materials and methods

Participants
A cross-sectional survey was conducted on children attending a random sample of DCCs in south-eastern France between January and April 2012. After obtaining parental consent, stools were collected from children’s diapers whenever available on the day of the survey and conserved at 4°C until they were analysed.

Screening of faecal ESBL-producing isolates, species identification and antibiotic susceptibility
Within 24 h following stool sampling, an aliquot of stools was spread on screening plates for selection of extended-spectrum cephalosporin-resistant isolates (ChromID ESBL, bioMérieux, Marcy-l’Etoile, France). Colonies growing on this medium were identified by the Vitek 2 system (bioMérieux). ESBL producers were confirmed by the double-disc synergy test. Antibiotic susceptibility was determined by using both the Vitek 2 system and the agar disc diffusion method and interpreted according to the 2012 recommendations of the French Antibiotic Committee (http://www.sfm-microbiologie.org/pages/AllAccueil). Susceptibility to the following antibiotics was taken into consideration to define the resistance score to antibiotic molecules other than extended-spectrum cephalosporins (cefotaxime, ceftriaxone and ceftazidime) for each isolate: amoxicillin/clavulanic acid, cefoxitin, ertapenem, imipenem, fosfomycin, levofloxacin, gentamicin, amikacin, trimethoprim/sulfamethoxazole and nitrofurantoin. The resistance score was the number of antibiotics to which the isolate was resistant or intermediate susceptible.

ESBL characterization
ESBLs were characterized as previously described. Briefly, specific primers for the blaTEM, blaSHV and blaCTX−M genes were used to screen for these genes. Then, specific primers were used to sequence the amplified genes and determine those encoding an ESBL enzyme.

Molecular characterization of ESBL-producing E. coli
To characterize the population structure of the ESBL-producing E. coli isolates, phylogenetic groups, ERIC-2 (enterobacterial repetitive intergenic consensus) PCR profiles and STs following Achtman’s multidisc sequence typing (MLST) scheme (http://mlst.ucc.ie/mlst/dbs/Ecoli) were determined as previously described. Two ERIC-2 PCR profiles were assumed to be different when they differed from each other by at least one band with high intensity. PFGE patterns, serotypes, fimH allele types, virulence factor genes (n = 28) and virotypes were determined as previously described for the isolates of E. coli ST131. Few virotypes have recently been defined and arbitrarily named A, B, C and D on the basis of the presence/absence of four distinctive virulence genes, including afaFM955459 (specific for an ST131 subgroup encoding an Afa/Dr adhesin), iroN (catecholate siderophore receptor), ibeA (invasion of brain endothelium) and sat (secreted autotransporter toxin). The patterns were as follows: virotype A (afaFM955459+/iroN−/ibeA−/sat+−), virotype B (afaFM955459−/iroN+/ibeA−/sat+−), virotype C (afaFM955459−/iroN−/ibeA+−/sat+−) and virotype D (afaFM955459−/iroN−/ibeA+−/sat−−). According to the definition of Tenover et al., two isolates were two strains when their PFGE patterns differed from each other by at least seven bands.

Characterization of the ESBL-carrying plasmids
Plasmids harboured by the ST131 E. coli isolates were rep typed using the PCR-based replicon typing scheme and plasmid sizes were determined using S1-treated genomic DNA followed by PFGE (S1-PFGE). Southern blots were performed on S1-PFGE with the blaCTX−M gene and IncF or IncI1 specific DIG-labelled probes (Roche Applied Science, Mannheim, Germany). IncF plasmids were subjected to replicon sequence typing to determine the FAB formula and IncI1 plasmids were typed by plasmidic MLST.

Results
Gut colonization with an ESBL-producing isolate
From January to April 2012, stools were collected from 419 children aged between 3 and 40 months in 25 participating DCCs. The mean number of included children per DCC was 16.7 (range: 8–23). Among these children, 28 (6.7%) attending 16 (64%) of the 25 participating DCCs carried ESBL-producing Enterobacteriaceae in their digestive tract, comprising 27 E. coli and 1 Klebsiella pneumoniae (Table 1). The number of children with a faecal ESBL-producing isolate varied from none to seven in each participating DCC. Only one child was detected with such an isolate in 11 (69%) of the 16 DCCs with colonized children (Table 1). In the remaining five DCCs, there were from two to seven children harbouring a faecal ESBL-producing isolate (Table 1).

ESBL characterization and antibiotic susceptibility
All of the detected ESBLs were CTX-M enzymes, as indicated in Table 1. CTX-M-15 was produced by the K. pneumoniae isolate and 10 (37%) of the 27 E. coli isolates. Among the remaining 17 E. coli isolates, 7 (26%) produced CTX-M-1, 6 (22%) CTX-M-14, 3 (11%) CTX-M-27 and 1 (4%) CTX-M-22. When considering the intermediate susceptible isolates as resistant, 100% of the isolates were resistant to cefotaxime (data not shown), 89% to...
ceftazidime and 86% to cefepime (Table 1). Regarding molecules other than extended-spectrum cephalosporins, none of the isolates was resistant to cefoxitin, carbapenems and fosfomycin (data not shown), whereas 7% were resistant to nitrofurantoin and 79% to amoxicillin/clavulanic acid (Table 1). The 27 E. coli isolates were more often resistant to trimethoprim/sulfamethoxazole (59%) and levofloxacin (52%) than to aminoglycosides (30%–33.3%) (Table 1).

**Table 1. Antibiotic susceptibility, ESBL type and genetic background of the ESBL-producing isolates**

<table>
<thead>
<tr>
<th>DCC number</th>
<th>Species/child-isolate number</th>
<th>CTX-M type</th>
<th>Susceptibility categorization(^b)</th>
<th>Resistance score</th>
<th>Phylogenetic group</th>
<th>ERIC-2 PCR profile</th>
<th>ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ec/C10</td>
<td>1</td>
<td>R R R S S S S S S S</td>
<td>2</td>
<td>B2</td>
<td>XI</td>
<td>ST131</td>
</tr>
<tr>
<td>2</td>
<td>Ec/C11</td>
<td>1</td>
<td>I R I S S S S S S R S</td>
<td>2</td>
<td>A</td>
<td>I</td>
<td>ST602</td>
</tr>
<tr>
<td>3</td>
<td>Ec/C29</td>
<td>1</td>
<td>R I S S S S S S R S</td>
<td>2</td>
<td>D</td>
<td>XV</td>
<td>ST350</td>
</tr>
<tr>
<td>4</td>
<td>Ec/C31</td>
<td>14</td>
<td>I I R S R R S S S S R S</td>
<td>2</td>
<td>B1</td>
<td>VI</td>
<td>ST101</td>
</tr>
<tr>
<td>5</td>
<td>Ec/C5</td>
<td>27</td>
<td>I I S R S R S S R S</td>
<td>2</td>
<td>B2</td>
<td>XI</td>
<td>ST131</td>
</tr>
<tr>
<td>6</td>
<td>Ec/C9</td>
<td>14</td>
<td>I I I S S S S S S S S S</td>
<td>1</td>
<td>D</td>
<td>XVI</td>
<td>ST3841</td>
</tr>
<tr>
<td>7</td>
<td>Kp/C8</td>
<td>15</td>
<td>I I R S S R R S R R S R S</td>
<td>3</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>8</td>
<td>Ec/C21</td>
<td>14</td>
<td>I I R S S R R S S S R F S</td>
<td>3</td>
<td>D</td>
<td>XVIII</td>
<td>ST3842</td>
</tr>
<tr>
<td>9</td>
<td>Ec/C28</td>
<td>14</td>
<td>I I R R R R R R S S S</td>
<td>5</td>
<td>B2</td>
<td>IX</td>
<td>ST193</td>
</tr>
<tr>
<td>10</td>
<td>Ec/C12</td>
<td>15</td>
<td>I I S S S S S R S</td>
<td>0</td>
<td>A</td>
<td>IV</td>
<td>ST762</td>
</tr>
<tr>
<td>11</td>
<td>Ec/C19</td>
<td>27</td>
<td>R I I R S S S S S S S S</td>
<td>2</td>
<td>B2</td>
<td>XIV</td>
<td>ST131</td>
</tr>
<tr>
<td>12</td>
<td>Ec/C30</td>
<td>14</td>
<td>I R I S S S S S S R S S</td>
<td>3</td>
<td>A</td>
<td>III</td>
<td>ST744</td>
</tr>
<tr>
<td>13</td>
<td>Ec/C6</td>
<td>14</td>
<td>I R S S S S S S R S</td>
<td>0</td>
<td>B2</td>
<td>VIII</td>
<td>ST127</td>
</tr>
<tr>
<td>14</td>
<td>Ec/C3</td>
<td>15</td>
<td>I I R R I R S S R S</td>
<td>5</td>
<td>B2</td>
<td>X</td>
<td>ST311</td>
</tr>
<tr>
<td>15</td>
<td>Ec/C26</td>
<td>15</td>
<td>R R R S S R S S S S S</td>
<td>1</td>
<td>D</td>
<td>XIX</td>
<td>ST3843</td>
</tr>
<tr>
<td>16</td>
<td>Ec/C7</td>
<td>15</td>
<td>R R R S S S S S S S S S</td>
<td>1</td>
<td>B2</td>
<td>VII</td>
<td>ST28</td>
</tr>
<tr>
<td>17</td>
<td>Ec/C16</td>
<td>14</td>
<td>I I S S S S R S R R S</td>
<td>2</td>
<td>D</td>
<td>XVII</td>
<td>ST38</td>
</tr>
<tr>
<td>18</td>
<td>Ec/C17</td>
<td>14</td>
<td>I I S S S S S S S S R S R R S</td>
<td>4</td>
<td>B1</td>
<td>V</td>
<td>ST58</td>
</tr>
<tr>
<td>19</td>
<td>Ec/C2</td>
<td>15</td>
<td>I I R R S S S S S S S R S</td>
<td>4</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>20</td>
<td>Ec/C13</td>
<td>15</td>
<td>I I I R S S S S S S S S</td>
<td>4</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>21</td>
<td>Ec/C14</td>
<td>15</td>
<td>I I I R S S S S S S S R R S</td>
<td>4</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>22</td>
<td>Ec/C15</td>
<td>15</td>
<td>I I R R S S S S S S S S</td>
<td>4</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>23</td>
<td>Ec/C22</td>
<td>15</td>
<td>I I I S S S S R S R S S R S</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>24</td>
<td>Ec/C23</td>
<td>15</td>
<td>I I R R R R R R R R R S S S S S S</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>25</td>
<td>Ec/C24</td>
<td>15</td>
<td>I I R R R R R R R R S S S S S S</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>26</td>
<td>Ec/C25</td>
<td>15</td>
<td>I I I R R R R R R R S S S S S S</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>27</td>
<td>Ec/C26</td>
<td>15</td>
<td>I I R R R R R R R R R R S S S S S S</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>28</td>
<td>Ec/C27</td>
<td>15</td>
<td>I I R R R R R R R R R R R S S S S S</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>29</td>
<td>Ec/C28</td>
<td>15</td>
<td>I I R R R R R R R R R R R R R R R R</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>30</td>
<td>Ec/C29</td>
<td>15</td>
<td>I I R R R R R R R R R R R R R R R R</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>31</td>
<td>Ec/C30</td>
<td>15</td>
<td>I I R R R R R R R R R R R R R R R R</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>32</td>
<td>Ec/C31</td>
<td>15</td>
<td>I I R R R R R R R R R R R R R R R R</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>33</td>
<td>Ec/C32</td>
<td>15</td>
<td>I I R R R R R R R R R R R R R R R R</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>34</td>
<td>Ec/C33</td>
<td>15</td>
<td>I I R R R R R R R R R R R R R R R R</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>35</td>
<td>Ec/C34</td>
<td>15</td>
<td>I I R R R R R R R R R R R R R R R R</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>36</td>
<td>Ec/C35</td>
<td>15</td>
<td>I I R R R R R R R R R R R R R R R R</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>37</td>
<td>Ec/C36</td>
<td>15</td>
<td>I I R R R R R R R R R R R R R R R R</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>38</td>
<td>Ec/C37</td>
<td>15</td>
<td>I I R R R R R R R R R R R R R R R R</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>39</td>
<td>Ec/C38</td>
<td>15</td>
<td>I I R R R R R R R R R R R R R R R R</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>40</td>
<td>Ec/C39</td>
<td>15</td>
<td>I I R R R R R R R R R R R R R R R R</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
<tr>
<td>41</td>
<td>Ec/C40</td>
<td>15</td>
<td>I I R R R R R R R R R R R R R R R R</td>
<td>5</td>
<td>B2</td>
<td>XIII</td>
<td>ST131</td>
</tr>
</tbody>
</table>

\(^a\)All isolates were susceptible to cefoxitin, imipenem and fosfomycin and resistant to ceftoxime.

\(^b\)Antibiotic molecules used to calculate the antibiotic resistance score.

The 27 CTX-M-producing E. coli isolates belonged to the main E. coli phylogenetic groups: 15 (55.5%) to group B2, 6 (22%) to group D, 4 (15%) to group A and 2 (7.5%) to group B1 (Table 1).

Twelve ERIC-2 PCR profiles were identified among the 27 E. coli isolates (Table 1). The isolates from groups A, B1 and D each displayed a unique profile \((n=12)\) (Table 1). In contrast, an identical ERIC-2 PCR profile (profile XIII) was identified among 8 of the 15 isolates belonging to group B2 (Table 1). Seven of the eight isolates with ERIC-2 PCR profile XIII were detected from the seven colonized children from DCC 23 and the remaining one from one (C20) of the two children found to harbour a faecal ESBL-producing E. coli isolate in DCC 24 (Table 1).

As indicated in Table 1, the 27 E. coli isolates displayed 16 STs. Four (25%) STs, all belonging to group D, were new STs (ST3841, ST3842, ST3843 and ST3867). The four isolates from group A, the two from group B1 and the remaining six from group D, which each displayed a unique ERIC-2 PCR profile, also each displayed a unique ST. In contrast, 12 of the 15 isolates from group B2 displayed ST131.

**E. coli ST131 characterization**

As indicated in Table 1, the 12 E. coli ST131 displayed five different ERIC-2 PCR profiles (X, XI, XII, XIII and XIV).
In an attempt to distinguish the eight ST131 isolates with the ERIC-2 PCR profile XIII from each other, PFGE typing was carried out. As indicated in Figure 1, the isolates from the seven children of DCC 23 were indistinguishable from each other, whereas they differed from the isolate from child C20 in DCC 24 by more than seven bands.

All E. coli ST131 displayed serotype O25b:H4 and fimH allele 30, except for the C10 isolate from DCC 1, which displayed serotype O16:H5 and fimH allele 41 (Table 2). None of the 28 studied virulence factor-encoding genes (fimH, F10 papA, sat, iucD, chuA, kpsM type II, traT, malX and usp) were detected in all isolates (Table 2). Eight of the 11 isolates with serotype O25b:H4 had the afaFM955459 gene and consequently belonged to virotype A. The remaining three O25b:H4 isolates and the single O16:H5 isolate belonged to virotype C as they only had the gene sat.

Eight E. coli isolates (C3 and all seven isolates originating from DCC 23, i.e. C13, C14, C15, C22, C23, C24 and C25) presented a CTX-M-15 enzyme carried by a 145 kb IncF F1:A2:B2 plasmid (Figure 1). Alternately, the CTX-M-27-carrying plasmids identified in E. coli isolates C5 and C20 both belonged to the IncF F1:A2:B20 type (145 kb), whereas the one presented by C19 could not be typed. Finally, the CTX-M-1 enzyme displayed by the C10 isolate was carried by an IncI1 ST35 plasmid (110 kb).

**Association of phylogenetic group, CTX-M type and antibiotic resistance score**

CTX-M enzymes that strongly hydrolyse ceftazidime (CTX-M-15 and CTX-M-27) were more frequent among group B2 E. coli (11/15: 73%) than among group A (1/4: 25%), group B1 (0/2) and group D (1/6: 17%) isolates (Table 1). The mean antibiotic resistance score was higher [3.3 (0–5)] for group B2 isolates than for the isolates of groups A [1.5 (0–3)], B1 [2.5 (1–4)] and D [1.5 (0–3)] (Table 1). Among group B2 isolates, levofloxacin resistance was more frequent among ST131 E. coli than among non-ST131 E. coli isolates (1/3), which displayed resistance frequencies similar to isolates from groups A (1/4) and B1 (1/2). Group D isolates were all susceptible to levofloxacin (Table 1).

**Discussion**

Increasing dissemination of E. coli producing ESBLs, notably CTX-M-type ESBLs, has been described worldwide since 2000. Many studies have reported on the prevalence of such isolates among extraintestinal pathogenic E. coli, whereas those reporting on the percentage of individuals carrying these isolates in their digestive tract are less common, particularly among children.

This is the first study to report faecal carriage of ESBL-producing Enterobacteriaceae among children attending DCCs. Among the 419 children screened in south-eastern France, one was found to harbour a faecal CTX-M-15-producing K. pneumoniae isolate and 27 (6.4%) a faecal CTX-M-producing E. coli isolate. Löhrr et al. showed long-term faecal carriage of CTX-M-15-producing K. pneumoniae in infants after discharge from neonatal intensive care units where an outbreak of CTX-M-15-producing K. pneumoniae had occurred. As a result, detecting faecal CTX-M-15-producing K. pneumoniae among children in DCCs is not surprising. However, as expected, the predominant species among the ESBL-producing Enterobacteriaceae isolates was E. coli. The percentage of DCC children colonized by CTX-M-producing E. coli was relatively high (6.4%) in comparison with the percentage found by Pallecchi et al. in Peru and Bolivia (1.7%) and Kaarme et al. in Sweden. However, this percentage was similar to that observed (6%) among healthy adults living in the Paris area (France) in 2011 and slightly higher than that reported by Birgy et al. among French children (4.6%) and Kaarme et al. among children in DCCs. Among the 27 studied E. coli isolates (44% and 37%, respectively), the prevalence of E. coli ST131 and CTX-M-15 were higher among CTX-M-15-producing E. coli isolates from DCC children than among those colonizing other different French populations: mothers and their newborns hospitalized in a Parisian hospital (9.4% E. coli ST131 and 18.8% CTX-M-15), and healthy adults living in the Paris area (10% E. coli ST131 and 33% CTX-M-15).
Table 2. Virulence factor-encoding genes and virotypes displayed by the 12 E. coli ST131 isolates

<table>
<thead>
<tr>
<th>Property/gene</th>
<th>Number (%) of ST131 isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesins</td>
<td>8 3 1 12 (100)</td>
</tr>
<tr>
<td>fimH allele 30</td>
<td>8 3 0 0</td>
</tr>
<tr>
<td>fimH allele 41</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>fimAVMT78</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>F10 papA</td>
<td>8 3 1 12 (100)</td>
</tr>
<tr>
<td>papEF</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>saf/focDE</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>saf/draBC</td>
<td>8 0 1 9 (75)</td>
</tr>
<tr>
<td>safEM955459</td>
<td>8 0 0 8 (67)</td>
</tr>
<tr>
<td>bmaE</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>gafD</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>Toxins</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>cnfI</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>cdtB</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>satF</td>
<td>8 3 1 12 (100)</td>
</tr>
<tr>
<td>hlyA</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>Siderophores</td>
<td>8 3 1 12 (100)</td>
</tr>
<tr>
<td>iucD</td>
<td>8 3 1 12 (100)</td>
</tr>
<tr>
<td>iroNP</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>chuA</td>
<td>8 3 1 12 (100)</td>
</tr>
<tr>
<td>Capsules</td>
<td>8 3 1 12 (100)</td>
</tr>
<tr>
<td>kpsM II</td>
<td>8 3 1 12 (100)</td>
</tr>
<tr>
<td>kpsM II-K2</td>
<td>7 0 1 8 (67)</td>
</tr>
<tr>
<td>kpsM II-K5</td>
<td>1 3 0 4 (33)</td>
</tr>
<tr>
<td>neuC-K1</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>kpsM III</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>8 3 1 12 (100)</td>
</tr>
<tr>
<td>cvaC</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>iss</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>traT</td>
<td>8 3 1 12 (100)</td>
</tr>
<tr>
<td>ibeA</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>malX (PAI)</td>
<td>8 3 1 12 (100)</td>
</tr>
<tr>
<td>usp</td>
<td>8 3 1 12 (100)</td>
</tr>
<tr>
<td>tsh</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>Virotypes</td>
<td>8 0 0 8 (67)</td>
</tr>
<tr>
<td>A</td>
<td>0 3 1 4 (33)</td>
</tr>
<tr>
<td>C</td>
<td>0 3 1 4 (33)</td>
</tr>
</tbody>
</table>

aGenes allowing for virote type differentiation. PAI, pathogenic island.

Another difference between mothers/newborns, healthy adults, French children and DCC children was the high proportion of faecal group B2 ESBL-producing E. coli in DCC children: 55% versus 15% for mothers/newborns, 14% for healthy adults and 5% for French children. An explanation for these differences could be the dissemination of CTX-M-15-producing E. coli ST131, which belonged to group B2, in DCC 23. However, by considering only one child instead of seven colonized by the same strain of E. coli ST131 in DCC 23 and subsequently a total of 21 DCC children with faecal ESBL-producing E. coli instead of 27, the percentage of group B2 E. coli remains high (43%) and ST131 is still predominant (28.5%). All these findings strongly suggest that DCC children might be a major reservoir of CTX-M-producing E. coli ST131 and that infections due to such isolates could become more common in this population. Weissman et al.13 have recently shown that among 10 infections due to CTX-M-15-producing E. coli in children hospitalized at Seattle Children’s Hospital, 8 were due to E. coli ST131. Chandramohan and Revell7 found that E. coli ST131 accounted for 10.2% among the CTX-M-producing E. coli causing urinary tract infection in children attending Texas Children’s Hospital.

This study is the first to show the presence of E. coli ST131 with serotype O16:H5 in France, whereas this type of E. coli ST131 has very recently been identified in Japan, Denmark, Australia and Spain.34–37 In our study, O16:H5 accounted for 8% of the ST131 isolates, whereas it accounted for 1% in Australia, 2.6% in Spain, 4% in Japan and 4.5% in Denmark.34–37 The 11 O25b:H4 ST131 isolates producing either CTX-M-15 or CTX-M-27 were resistant to fluoroquinolones and belonged to the fimH-based H30 subclone, whereas the single O16:H5 ST131 isolate producing CTX-M-1 was susceptible to fluoroquinolones and belonged to the fimH-based H41 subclone. Recently, Johnson et al.38 showed that the H30 subclone emerged a decade ago within ST131 and expanded rapidly to become what is now the dominant and most extensively multidrug-resistant lineage of extraintestinal pathogenic E. coli worldwide. In the study by Johnson et al., they also identified isolates with fimH41 that were mostly (80%) susceptible to fluoroquinolones, accounted for 1% of the isolates and were only present between 2007 and 2010. In the study of Matsumura et al.,39 which only reports on serotypes, it was also shown that ST131-O16 isolates were more often (82%) susceptible to fluoroquinolones. Do all O16:H5 isolates belong to the fimH-based H41 subclone? Recently, Johnson et al.38 showed that ST131-O16 isolates were more often (82%) susceptible to fluoroquinolones. Do all O16:H5 isolates belong to the fimH-based H41 subclone? Further studies are required to improve our insight into ST131-O16:H5.

According to the virotypes recently defined by Blanco et al.,23 DCC children strains displayed virotypes C and A, the two most prevalent virotypes among the international collection previously published and among the Spanish clinical isolates whose analysis allowed Blanco et al.23 to characterize four virotypes (A, B, C and D). In Spain, virotype A was significantly associated with nursing home residents, whereas virotypes B and D were significantly associated with younger patients and community acquisition.25 Our results do not seem to coincide with the Spanish epidemiological characteristics. Appropriate studies have to be performed in France to clarify the relationship between virotypes and both clinical features and individuals’ lifestyles.

Although the population structure of the faecal ESBL-producing E. coli from DCC children was polyclonal (16 STs for 27 E. coli), like that of those from healthy adults (18 STs for 21 isolates), we observed that the STs common to DCC children and healthy adult isolates were ST131 (group B2), which is globally described, and ST744.12,40 However, the majority of the remaining unique STs identified among the children’s E. coli isolates have already been mentioned several times in the literature: as examples, ST602 producing CTX-M-1, like in our study,61 ST101 (i) producing carbapenemase (NDM-1) and CTX-M-15 from clinical samples from India,62 (ii) as foodborne intestinal pathogenic E. coli in South Korea,49 and...
...as clinical isolates producing ESBL in Spain,44 ST58 producing CTX-M-1 (like in our study) in the digestive tract of healthy humans in Tunisia,9 and producing CTX-M-14 from isolates causing cattie mastitis in France.45 ST38 in zoo animals, human diarrhoeagenic Escherichia coli, carbapenemase producers in Finland and the UK and in ESBL producers in Canada.46–51 ST127 assessed by Gibreel et al.6 as a clone recently emerged in the UK among community-acquired infections, and, ST1193 producing CMY enzymes from a French cystic fibrosis patient.52

Interestingly, all CTX-M-15-producing enzymes in ST131 isolates were carried by an identical IncF F2:A1:B− plasmid, which has already been reported in CTX-M-15-producing isolates.28,53 The IncF F1:A6:B20 plasmid, which carried two out of the three CTX-M-27 enzymes, has also recently been described in CTX-M-27-producing ST131 isolates.39 Likewise, IncI plasmids were reported as carrying ESBL genes in ST13154 and an IncI1 ST35 plasmid was characterized here, which displayed a CTX-M-1 enzyme. These results suggest that specific IncF or IncI1 plasmid subtypes may participate in the dissemination of specific CTX-M enzymes among the ST131 clone.

In conclusion, to our knowledge, this is the first study to investigate intestinal carriage of ESBL-producing Enterobacteriaceae isolates in children attending DCCs. The majority (96%) of these isolates belonged to E. coli species and all produced CTX-M-type enzymes. Among these E. coli isolates, which colonized 6.4% of DCC children, the worldwide O25b:H4 ST131 H30 subclone producing CTX-M-15 and resistant to fluoroquinolones was both dominant and apparently disseminating in one DCC.38 This reinforces the necessity of rigorous hygiene measures within DCCs. We identified for the first time in France the O16:HS ST131 H41 subclone producing CTX-M-1 and susceptible to fluoroquinolones. Whether children might be the reservoir of this subclone recently identified worldwide deserves further investigation.

Acknowledgements
We thank Estelle Saras for her skilful assistance in the plasmid characterization.

Funding
This study was supported by grants from Projet Hospitalier de Recherche Clinique National 2011 n° 25.01 and from Conselleria de Cultura Educacién e Ordenacién Universitaria (Xunta de Galicia) and European Regional Development Fund (CN2012/303).

Transparency declarations
None to declare.

References

Downloaded from https://academic.oup.com/jac/article-abstract/69/5/1231/681506 by guest on 24 April 2019


