Erm(41)-dependent inducible resistance to azithromycin and clarithromycin in clinical isolates of Mycobacterium abscessus

Florian P. Maurer1,2, Claudio Castelberg1, Chantal Quiblier1, Erik C. Böttger1,2 and Akos Somoskovi1,2*

1Institut für Medizinische Mikrobiologie, Universität Zürich, Glaristraße 30/32, 8006 Zürich, Switzerland; 2Nationales Zentrum für Mykobakterien, Universität Zürich, Glaristraße 30/32, 8006 Zürich, Switzerland

*Corresponding author. Institut für Medizinische Mikrobiologie, Universität Zürich, Glaristraße 30/32, 8006 Zürich, Switzerland. Tel: +41-44-634-2700; Fax: +41-44-634-4906; E-mail: asomoskovei@imm.uzh.ch

Received 6 November 2013; returned 27 November 2013; revised 23 December 2013; accepted 5 January 2014

Objectives: The ribosomal methylase Erm(41) confers inducible resistance to macrolides in Mycobacterium abscessus. The aim of this work was to systematically study and compare drug susceptibility to clarithromycin and azithromycin in M. abscessus and Mycobacterium chelonae clinical isolates with a particular focus on inducible drug resistance.

Methods: Clinical isolates of M. abscessus subsp. abscessus (n = 21), M. abscessus subsp. bolletii (n = 16), M. abscessus subsp. massiliense (n = 10) and M. chelonae (n = 22) were characterized regarding their erm(41) and rrl genotypes and subjected to drug susceptibility testing (DST) for clarithromycin and azithromycin. Microdilution DST was performed in cation-adjusted Mueller–Hinton broth (pH 7.4) with readings at days 3, 7 and 12 and with pre-incubation at subinhibitory macrolide concentrations for erm(41) induction. In addition, the influence of variations in pH and growth medium on DST results was examined.

Results: MICs of azithromycin were consistently higher than those of clarithromycin. In strains with an inducible erm(41) gene, high median MICs of ≥256 mg/L on day 12 were observed for both clarithromycin and azithromycin. Inducible resistance was at least as pronounced for azithromycin as for clarithromycin.

Conclusions: Our findings do not support the suggestion of a preferential use of azithromycin over clarithromycin in order to limit inducible macrolide resistance. Both compounds provoked a comparable resistance phenotype in M. abscessus. Caution is needed when using either azithromycin or clarithromycin for treatment of M. abscessus infections.

Keywords: macrolides, rapidly growing mycobacteria, inducible resistance, drug susceptibility testing

Introduction

Azithromycin is an orally administered azalide antimicrobial that is structurally related to macrolides. The serum concentration of azithromycin is lower than that of clarithromycin and erythromycin,1 as azithromycin is rapidly removed from the circulation and extensively distributed to intracellular compartments.1–3 These unique pharmacokinetic properties of azithromycin allow for single daily dosages and intermittent treatment,1 which can be beneficial for patient compliance, especially in the context of long-term regimens commonly required in mycobacterial infections.

Newer macrolides are considered key agents for the treatment of emerging infections caused by the closely related, rapidly growing mycobacterial species Mycobacterium abscessus and Mycobacterium chelonae.4 In both species, acquired resistance to macrolides occurs through point mutations at positions 2058 or 2059 of the 23S rRNA (rrl) gene.5,6 In contrast to M. chelonae, M. abscessus harbours an inducible ribosomal methylase, Erm(41), which represents an additional intrinsic resistance mechanism against macrolides. Inducible resistance can be demonstrated either by pre-incubation for 3 days prior to drug susceptibility testing (DST) using subinhibitory macrolide concentrations between 0.125× and 0.5× MIC or by prolonging incubation up to 12–14 days.5,7,8

The subspecies designations within M. abscessus sensu lato, i.e. M. abscessus subsp. abscessus, M. abscessus subsp. bolletii and M. abscessus subsp. massiliense, are subject of an ongoing taxonomic debate.5,9–11 M. abscessus subsp. abscessus and M. abscessus subsp. bolletii both usually carry an inducible erm(41) gene.5 Recently, Bastian et al.12 reported that a single nucleotide exchange, 128C (Trp-10→Arg), in erm(41) leads to a loss of methylase activity in M. abscessus subsp. abscessus, resulting in a phenotype that is naturally susceptible to macrolides. M. abscessus subsp. massiliense differs from M. abscessus subsp. abscessus and M. abscessus subsp. bolletii by an erm(41) that is dysfunctional due to two characteristic deletions (bases 64–65 and...
159–432). Interestingly, two strains of *M. abscessus* subsp. *massiliense* with a functional erm(41) gene have been described recently.14 Data comparing the efficacy of clarithromycin and azithromycin in rapidly growing mycobacteria (RGM) are scarce. Using the agar gradient diffusion method (Etest), Bastian et al.9 reported that MICs of azithromycin for *M. abscessus* complex tend to be higher than those of clarithromycin. This is in accordance with an early report of Brown et al.,10 who observed higher MICs of azithromycin compared with clarithromycin for *M. abscessus* and *M. chelonae* using broth microdilution assays. However, the procedures used for species identification in the latter study at that time do not reflect current state-of-the-art taxonomy.15 In contrast with these studies, Choi et al.16 more recently reported that azithromycin is a weaker inducer of erm(41) gene expression than clarithromycin and should therefore be preferred in antibiotic therapy of *M. abscessus* infections. The aim of this work was to systematically evaluate the in vitro drug susceptibility of clarithromycin and azithromycin in *M. abscessus* and *M. chelonae* clinical isolates, with emphasis on inducible resistance.

Materials and methods

Strains

Clinical isolates of *M. abscessus* subsp. *abscessus* (*n* = 21), *M. abscessus* subsp. *boletii* (*n* = 16), *M. abscessus* subsp. *massiliense* (*n* = 10) and *M. chelonae* (*n* = 22) were isolated from patient specimens between 2005 and 2013. Species identification was based on the sequences of the 16S rRNA, the rpoB and the *erm*(41) genes as described previously.13,17,18 The *erm*(41) and *rhl* genotypes were determined by DNA sequence analysis as described previously.19 In brief, the amplification primers used were MCLR 19F (5′-GTAGCGAAATTCCTTGTCGG-3′, *E. coli* rhl positions 1930–1949) and MCLR 21R (5′-TTCCCGCTTAGATGCTTTCAG-3′, *E. coli* rhl positions 2765–2745) for the *rhl* gene and *erm*41F2 (5′-GACCGGGGCCTTCTTACG-3′) and *erm*41R2 (5′-GACTCTCCGGCAAGATTCC-3′) for *erm*(41). The PCR conditions for the *rhl* PCR were 3 min at 95°C, followed by 30 cycles at 95°C for 50 s, 48°C for 50 s and 72°C for 120 s. The PCR conditions for *erm*(41) were 5 min at 95°C, followed by 40 cycles at 94°C for 30 s, 55°C for 30 s and 72°C for 30 s. Sequencing was performed using an Applied Biosystems 3130 Genetic Analyzer and BigDye Terminator Cycle Sequencing chemistry (Applied Biosystems, Carlsbad, CA, USA). The sequences were analysed using Lasergene SeqMan software (DNASTAR, Madison, WI, USA), the SmartGene database (SmartGene Zug, Switzerland) and the BLAST algorithm (http://blast.ncbi.nlm.nih.gov). To identify mutations in *rhl* sequences were compared with the published *M. abscessus* subsp. *abscessus* genome (GenBank accession number NC_010397.1). The published sequences of *M. abscessus* subsp. *abscessus* strains ATCC 19977 (T28 sequvar, GenBank accession number FJ338483.1) and CR5701 (C28 sequvar, GenBank accession number HQ127366.1) were used as references for *erm*(41) analysis.

DST

DST was performed based on the current CLSI recommendations.20 We determined MIC ranges and median MICs of clarithromycin and azithromycin for a set of clinical RGM isolates: *M. abscessus* subsp. *abscessus* (T28 sequvar), *n* = 21; *M. abscessus* subsp. *boletii*, *n* = 16; *M. abscessus* subsp. *massiliense*, *n* = 10; and *M. chelonae*, *n* = 22 (Table 1). The data show that the MICs of azithromycin were consistently higher than those of clarithromycin for all examined isolates. In strains carrying an inducible Erm(41) methylase, high median MICs of both clarithromycin and azithromycin were observed at day 7 (azithromycin >256 mg/L and clarithromycin 32 mg/L for *M. abscessus* subsp. *abscessus* T28 sequvar; azithromycin >256 mg/L and clarithromycin 128 mg/L for *M. abscessus* subsp. *boletii*).

Assessment of inducible macrolide resistance

We additionally studied the effect of pre-incubation with macrolides on selected *M. abscessus* isolates. For *M. abscessus* subsp. *abscessus* ATCC 19977 and a clinical *M. abscessus* subsp. *abscessus* isolate (both *erm*(41) T28 sequvar), pre-incubation at subinhibitory concentrations of either clarithromycin or azithromycin resulted in a marked increase in the MICs of both compounds between days 3 and 12 (Figure 1a and b). Inducible resistance was at least as pronounced against azithromycin as against clarithromycin in *M. abscessus* subsp. *abscessus* *erm*41(41) T28 sequvars, regardless of pre-incubation (Figure 1a and b). A similar but much less pronounced increase in MIC values was observed for...
the two M. abscessus subsp. abscessus erm(41) C28 sequevars, again regardless of pre-incubation (Figure 1c and d). Azithromycin and clarithromycin MIC readings on day 12 were below or around 16 and 2 mg/L, respectively, and thus much lower than those for the two T28 sequevars (both >256 mg/L, Figure 1a and b). Interestingly, the day 12 azithromycin values for the two C28 sequevars were clearly higher than the day 12 azithromycin MICs for clinical M. abscessus subsp. massiliense isolates, which carry a large deletion in the \(\text{erm}(41) \) gene (see Figure 1e). A control clinical M. abscessus subsp. abscessus isolate carrying the \(rl \) mutation A2058G showed clarithromycin and azithromycin MICs of >256 mg/L already on day 3, regardless of pre-incubation (Figure 1f).

Effect of the medium composition on the MICs of clarithromycin and azithromycin

The two liquid media used for DST in the previous studies differ both in their composition and acidity.\(^9,16\) Bastian \textit{et al.}\(^9\) employed the widely used CAMHB (pH 7.4) medium, which contains beef extract, hydrolysed casein, starch and defined amounts of \(\text{Ca}^{2+} \) and \(\text{Mg}^{2+} \). Choi \textit{et al.}\(^5,9\) used Middlebrook 7H9 medium, which is a complex liquid growth medium frequently used for the cultivation of mycobacteria. Middlebrook 7H9 has a lower pH (pH 6.8) and contains a large number of inorganic salts. Since macrolide activity is sensitive to pH,\(^1,2,10\) we hypothesized that the use of the different media may influence the MIC values. Clarithromycin MICs for M. abscessus subsp. abscessus ATCC 19977 on days 3, 7 and 12 were 4, 4 and 32 mg/L in Middlebrook 7H9 and 1, 8 and 256 mg/L in CAMHB, respectively. For the same strain, the observed azithromycin MICs were 8, 256 and >256 mg/L in Middlebrook 7H9 and 2, 64 and 256 mg/L in CAMHB, respectively. Azithromycin consistently showed an inducible resistance phenotype comparable to that of clarithromycin also at additional pH levels (pH 6.1 and 8.1) in both media (data not shown).

Discussion

Macrolides such as clarithromycin and azithromycin are important components of therapeutic regimens against infections caused by \(M. \text{abscessus sensu lato} \) and \(M. \text{chelonae} \). Proper identification of \(M. \text{abscessus} \) isolates to the subspecies level is indispensable, since significant differences exist in natural resistance to macrolides due to a functional, dysfunctional or non-existent \(\text{erm}(41) \) gene.\(^5,9\) Recently, Bastian \textit{et al.}\(^9\) investigated a significant number of \(M. \text{abscessus} \) complex clinical isolates by phenotypic DST for clarithromycin and azithromycin and by sequencing of the \(\text{erm}(41) \) gene. These results indicated that MICs of azithromycin were generally higher than those of clarithromycin after 5 and 7 days of incubation.\(^9\) In contrast, experiments conducted more recently by Choi \textit{et al.}\(^15\) in \(M. \text{abscessus} \) subsp. abscessus indicated that clarithromycin was a stronger inducer of \(\text{erm}(41) \), leading to higher mRNA expression and a more rapid increase in MICs during prolonged incubation compared with azithromycin.

In order to resolve these apparently conflicting results, we reanalysed the methodology used in the published studies and conducted additional experiments. We have identified significant methodological differences between the above-mentioned studies and the current CLSI guideline, which recommends broth microdilution in CAMHB for routine DST of RGM.\(^20\) Bastian \textit{et al.}\(^9\) used a commercial broth microdilution method (with prolonged incubation for inducible macrolide resistance) for clarithromycin and the agar gradient diffusion method (Etest) for azithromycin to compare MIC ranges and mean MICs of the two drugs. Choi \textit{et al.}\(^16\) used pre-incubation and prolonged incubation in Middlebrook 7H9 medium (pH 6.8) to evaluate differences in inducible resistance between clarithromycin and azithromycin.

Our data using CAMHB (pH 7.4) and test conditions based on the CLSI guidelines show that the median MICs of azithromycin for \(M. \text{abscessus sensu lato} \) and \(M. \text{chelonae} \) are markedly higher

<table>
<thead>
<tr>
<th>Species/antibiotic</th>
<th>MIC range (mg/L)</th>
<th>Median MIC (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>day 3</td>
<td>day 7</td>
</tr>
<tr>
<td>(M. \text{abscessus subsp. abscessus}) clarithromycin (n=21)</td>
<td><0.5–8</td>
<td><0.5–256</td>
</tr>
<tr>
<td>azithromycin (n=21)</td>
<td><0.5–256</td>
<td>64 to >256</td>
</tr>
<tr>
<td>(M. \text{abscessus subsp. bolletii}) clarithromycin (n=16)</td>
<td>1–4</td>
<td>32–256</td>
</tr>
<tr>
<td>azithromycin (n=16)</td>
<td>2–128</td>
<td>256 to >256</td>
</tr>
<tr>
<td>(M. \text{abscessus subsp. massiliense}) clarithromycin (n=10)</td>
<td><0.5</td>
<td><0.5–2</td>
</tr>
<tr>
<td>azithromycin (n=10)</td>
<td>1–4</td>
<td>2–8</td>
</tr>
<tr>
<td>(M. \text{chelonae}) clarithromycin (n=22)</td>
<td><0.5–1</td>
<td><0.5–2</td>
</tr>
<tr>
<td>azithromycin (n=22)</td>
<td><0.5–16</td>
<td>1–16</td>
</tr>
</tbody>
</table>

Shown are MICs for isolates with a wild-type \(rl \) gene. \(M. \text{abscessus subsp. abscessus} \) and \(M. \text{abscessus subsp. bolletii} \) isolates carried an inducible \(\text{erm}(41) \) methylase (all T28 sequevars).
than those of clarithromycin. Inducible resistance was comparable or even slightly more pronounced for azithromycin than for clarithromycin in both *M. abscessus* subspecies *abscessus* erm(41) T28 sequevars and *M. abscessus* subspecies *bolletii* (Table 1). We conducted additional experiments with pre-incubation followed by prolonged incubation using representative strains belonging to the *M. abscessus* complex and compared the results with those from our standard testing system (prolonged incubation alone). In contrast to the recent report of Choi et al., our results do not show that clarithromycin triggers a more rapid or more pronounced *erm*(41)-related macrolide resistance than azithromycin in *M. abscessus sensu lato*. We observed a similar inducible resistance phenotype for both compounds, despite the generally higher MICs of azithromycin compared with clarithromycin (Table 1 and Figure 1). We hypothesized that differences in growth media, e.g. pH, might influence azithromycin activity, which might explain the different results by Choi et al. However, additional experiments in Middlebrook 7H9 and standard CAMHB medium ruled out this possibility.

We also observed that *M. abscessus* subspecies *abscessus* erm(41) C28 sequevars showed increasing MIC levels during prolonged incubation with clarithromycin. This observation is supported by

Figure 1. MICs of clarithromycin (CLR) and azithromycin (AZM) for *M. abscessus* complex isolates. (a) *M. abscessus* subspecies *abscessus* ATCC 19977, *erm*(41): T28, rrl: wild-type. (b) *M. abscessus* subspecies *abscessus* clinical isolate, *erm*(41): T28, rrl: wild-type. (c and d) *M. abscessus* subspecies *abscessus* clinical isolates, *erm*(41): C28, rrl: wild-type. (e) *M. abscessus* subspecies *massiliense*, *erm*(41): two deletions (2 and 276 bp), rrl: wild-type. (f) *M. abscessus* subspecies *abscessus* clinical isolate, *erm*(41): T28, rrl: A2058G. For pre-incubation experiments, MIC testing was repeated following 3 days of pre-incubation of liquid cultures in 0.25× MIC of clarithromycin and azithromycin, respectively.
the previous finding that both T28 and C28 sequevars show a comparable increase in mRNA transcripts upon exposure to macrolides.5 The MICs of clarithromycin and azithromycin did not increase to ≥32 mg/L at day 12 and thus were much lower than those for \textit{M. abscessus} subsp. abscessus T28 sequevars. However, these MICs were clearly higher than the macrolide MICs for \textit{M. abscessus} subsp. massiliense, which possesses an \textit{erm}(41) with a large deletion (Table 1). These results suggest that the single amino acid exchange, Trp-10 \rightarrow Arg (T28C), does not completely abort Erm(41) functionality and that a deletion as found in \textit{M. abscessus} subsp. massiliense is required to result in a completely dysfunctional gene product. However, since only two \textit{M. abscessus} subsp. abscessus C28 sequevars were available to us, this observation will require further clarification on a larger set of such strains.

In conclusion, the median MICs of azithromycin were higher and increased at a similar rate during prolonged incubation compared with those of clarithromycin for clinical \textit{M. abscessus} complex isolates. Variation of our standard test conditions with respect to pre-incubation, pH and medium did not support the notion that azithromycin is a weaker inducer of \textit{erm}(41)-related macrolide resistance in \textit{M. abscessus} sensu lato than clarithromycin.16 Our data show that the single amino acid exchange Trp-10 \rightarrow Arg in \textit{erm}(41) does not result in a complete loss of inducibility, although MICs of both macrolides after prolonged incubation remained well below those for \textit{erm}(41) T28 sequevars. Our data further show that both clarithromycin and azithromycin may trigger inducible macrolide resistance in vitro and that caution is advisable when using either compound in vivo in the presence of a functional Erm(41) methylase.

Acknowledgements

We wish to thank M. Hombach and G. Bloemberg for critical reading of the manuscript prior to submission.

Funding

This work was in part funded by the University of Zurich.

Transparency declarations

None to declare.

References

9 Bastian S, Veziroglu N, Roux AL et al. Assessment of clarithromycin susceptibility in strains belonging to the \textit{Mycobacterium abscessus} group by \textit{erm}(41) and \textit{rl} sequencing. \textit{Antimicrob Agents Chemother} 2011; \textbf{55}: 775–81.
11 Leao SC, Tortoli E, Viana-Niero C et al. Characterization of mycobacteria from a major Brazilian outbreak suggests that revision of the taxonomic status of members of the \textit{Mycobacterium chelonae-M. abscessus} group is needed. \textit{J Clin Microbiol} 2009; \textbf{47}: 2691–8.