Evolution of HIV-1 quasispecies and coreceptor use in cell reservoirs of patients on suppressive antiretroviral therapy

Stéphanie Raymond1–3*, Adrien Saliou1, Pierre Delobel1,2,4, Michelle Cazabat1,3, Christophe Pasquier1,3, Nicolas Jeanne1,3, Karine Sauné1–3, Patrice Massip2,4, Bruno Marchou2,4 and Jacques Izopet1–3

1INSERM, U1043, Toulouse F-31300, France; 2Université Toulouse III Paul-Sabatier, Faculté de Médecine Toulouse-Purpan, Toulouse F-31300, France; 3CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse F-31300, France; 4CHU de Toulouse, Hôpital Purpan, Service des Maladies Infectieuses et Tropicales, Toulouse F-31300, France

*Corresponding author. CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse F-31300, France. Tel: +33-5-67-69-04-24; Fax: +33-5-67-69-04-25; E-mail: raymond.s@chu-toulouse.fr

Received 4 February 2014; returned 25 February 2014; revised 4 April 2014; accepted 4 April 2014

Objectives: To track changes in the V3 env region of HIV-1 quasispecies and determine virus coreceptor use in cell reservoirs of patients on long-term suppressive antiretroviral therapy (ART).

Patients and methods: Ten patients whose plasma viraemia had been suppressed for a median of 5.5 years were followed for 5 years. The V3 env regions of viruses in peripheral blood mononuclear cells were analysed by ultra-deep sequencing (UDS). HIV-1 tropism was predicted using the geno2pheno 5.75 algorithm and a phenotypic assay.

Results: The UDS and phenotypic assay data were concordant for predicting HIV-1 tropism. CXCR4-using viruses detected by UDS accounted for 14.7%–76.5% of the virus populations in samples from five patients at enrolment. Five patients harboured pure R5 virus populations and no X4 viruses emerged during the 5 years. The selection pressures estimated by the dN/dS ratio were acting on the V3 region to produce diversification of the quasispecies in CXCR4-infected patients and purification of the quasispecies in R5-infected patients on effective ART.

Conclusions: UDS showed that the virus quasispecies in cell reservoirs of patients on long-term suppressive ART continued to evolve. CXCR4-using variants became more diversified. Analysis of the selection pressures on the virus quasispecies could provide a clearer picture of virus persistence in patients on effective ART.

Keywords: V3 envelope region, ultra-deep sequencing, selection pressure

Introduction

Highly active antiretroviral therapy (ART) decreases the plasma load of HIV-1 RNA to below the detection limit of standard assays, resulting in dramatic improvements in the clinical course of HIV-1 infections. However, the HIV-1 that persists in cellular reservoirs prevents eradication of the virus. Assays of HIV-1 DNA in peripheral blood mononuclear cells (PBMCs) have shown changes in DNA sequences even in patients on prolonged effective ART. The env gene of HIV-1 is subject to high selection pressure so that its sequence varies greatly. This region is important because it is responsible for the capacity of HIV-1 to use coreceptors for entry into host cells. CCR5-using viruses are classified as R5 variants, CXCR4-using viruses as X4 variants, viruses that use both coreceptors as R5X4 dual-tropic variants, and mixtures of R5, X4 and/or R5X4 variants as R5X4 dual-mixed.

New genotypic methods allow clonal analysis of the virus quasispecies with description and quantification of the minor variants. We therefore used ultra-deep sequencing (UDS) to investigate the temporal evolution of HIV-1 V3 sequences in 10 patients with sustained suppression of plasma HIV viraemia who had been on potent antiretroviral treatment for a median period of 10 years.

Patients and methods

The 10 patients enrolled were infected with subtype B HIV-1 and had had sustained optimal virological responses to ART for a median of 5.5 years (Table 1). They were treated at the Department of Infectious Diseases of Toulouse University Hospital, France, and were participants in the ANRS EP32 study. The median age of the patients was 47 years (IQR, 42–52) and their plasma HIV-1 RNA remained undetectable for a further 5 years (<40 copies/mL measured every 3–6 months by the COBAS® AMPLICOR HIV-1 Monitor test, Roche Diagnostics). The optimal virological response was defined as having a viral load <40 copies/mL at each measurement, tolerating only one blip in viral load (<200 copies/mL) throughout the study. No patient received coreceptor antagonists. This research was approved by the Institutional Review Board of Toulouse University Hospital and the patients gave their informed consent. HIV-1 tropism...
Results

At the time of enrolment, the patients had been on effective treatment for a median of 5.5 years and the TTT recombinant phenotypic assay indicated the presence of R5X4 dual-mixed virus populations in five patients and pure R5 virus populations in the other five. UDS detected CXCR4-using viruses that accounted for 14.7%–76.5% of the virus populations in the five R5X4 phenotyped samples (Table 1). The R5X4 quasispecies contained more unique clones (median 19) than did the R5 quasispecies (median 7; P = 0.696). The cell-associated HIV DNA content was stable in the R5X4-infected patients (P = 0.696, P = 0.0975), whereas it was stable in the R5X4-infected patients (P = 0.86). The cell-associated HIV DNA content was stable in the patients under effective highly active ART between the two times of observation (mean, 2.15 log copies/10^6 PBMCs, data not shown).

We used the sequences obtained by UDS to construct phylogenetic trees by the neighbour-joining method, which showed no
clustering with respect to sample timing or tropism. Phylogenetic analysis excluded any possibility of sample contamination (data not shown). We evaluated the selection pressure on the V3 region of the quasispecies using the dN/dS ratio (Figure 1). The medians of the intrasample dN/dS ratios at enrolment were 1.23 for patients with CXCR4-using variants and 0.53 for those with only CCR5-using variants ($P = 0.059$). The medians of intrasample dN/dS ratios 5 years later were 1.58 for patients with CXCR4-using viruses and 1.05 for those with only CCR5-using variants ($P = 0.55$). The median of the interstage dN/dS ratio for patients infected with CXCR4-using variants (1.39) differed from that for patients with exclusive CCR5-using variants (0.66; $P = 0.075$).

Discussion

We used UDS to investigate genetic evolution in the V3 env region of HIV-1 quasispecies in 10 patients who had been given effective ART for a median duration of 10 years. While we found no tropism switching in individual patients during the 5 years, analysis of sequences generated by UDS showed that selection pressures had different impacts on the R5 and R5X4 virus populations in PBMCs.

The evolution of virus tropism during suppressive ART is controversial. Three studies reported <10% of tropism switching from R5 to X4 in patients on ART for 2–3.5 years, whereas two other studies described 27%–48% of tropism switching in a period of 1–5 years. These discrepancies could be due to the heterogeneity of the nadirs of CD4+ T cell numbers, which varied widely between patients and were correlated with the frequency of tropism switching. Moreover, one study included only treatment-naive patients, while others included previously treated patients. Our patients had been on effective ART for a median of 5.5 years, unlike those included in previous studies. Thus, we examined the virus quasispecies in patients with long-term...
virological suppression. The virus DNA in PBMcs was submitted to
to selection pressures, but no tropism switch occurred.

UDS detected sequence variations in the V3 region of the virus
DNA despite plasma HIV-1 RNA being undetectable. The V3
regions of the virus quasispecies in PBMcs were modified,
which can be shown by the substitution rates and the intersample
DN/dS ratios, which assess selection pressure over time. Intrasample DN/dS
ratios in the pure R5-infected patients indicated a change from
purifying to neutral selection during the 5 year interval. The median of the intersample DN/dS ratio indicated purification of
the V3 quasispecies in patients infected exclusively with
CCR5-using viruses. The nature of the selection pressures on
these sequences is not known. Conventional clonal analysis previously
indicated a reduction in genetic diversity in the V3 region of
the virus population in patients on effective ART.18 Purification of
the quasispecies without any virus replication could reflect the
proliferation of HIV-1-infected cells.19 In contrast, the median of the
interstage DN/dS ratio suggested diversification in the V3
region of HIV-1 in patients infected with CXCR4-using viruses.

The diversification of the R5X4 quasispecies may be linked to
the restoration of the immune system in patients on ART with production of naive CD4+ T cells that bear large numbers of CXCR4.
The CXCR4-using variants would replicate more readily in the naive CD4+ T cells of these patients on ART, or be more suitable
for the cell-to-cell transmission that has been associated with
virus persistence under ART.20 The absence of genetic evolution
of the quasispecies in some patients, notably those infected with
R5-tropic viruses, suggests that proliferation of latently infected cells could be the main mechanism accounting for
virus persistence in these patients. By contrast, genetic evolution of the quasispecies in other patients, mainly infected with
X4-tropic viruses, could argue in favor of some residual virus rep-
lication despite ART, either by free virions or cell-to-cell spread.

These observations on virus persistence may be considered when designing strategies for HIV cure. Limitations of this study
were the small number of patients included and the inability to
determine whether the quasispecies evolved differently in cell
addition to the virus in patients infected with CXCR4-using viruses and to
favor the purification of quasispecies in patients infected with
pure R5 viruses. The evolution of the quasispecies in patients on
potent ART should be further investigated to better understand
the mechanisms responsible for virus persistence.

Funding

This work was supported by the ANRS (Agence Nationale de Recherche sur
le SIDA et les Hepatites Virales, Paris, France).

Transparency declarations

None to declare.

References

1 Chun TW, Carruth L, Finzi D et al. Quantification of latent tissue reservoirs and

2 Izopet J, Cazabat M, Pasquier C et al. Evolution of total and integrated

3 Delobel P, Sondres-Saune K, Cazabat M et al. R5 to X4 switch of the predominant HIV-1 population in cellular reservoirs during effective highly

4 Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol

7 Delobel P, Nugeyre MT, Cazabat M et al. Naive T-cell depletion related to infection by X4 human immunodeficiency virus type 1 in poor

8 Raymond S, Delobel P, Maguiner M et al. Development and performance of a new recombinant virus phenotypic entry assay to determine HIV-1

11 Tamura K, Peterson D, Peterson N et al. MEGAS: molecular evolutionary
genetics analysis using maximum likelihood, evolutionarily distance, and

12 Yang B. Statistical methods for detecting molecular adaptation. Trends

13 Seclen E, Garrido C, Gonzalez MD et al. High sensitivity of specific
genotyping tools for detection of X4 variants in antiretroviral-treated patients suitable to be treated with CCR5 antagonists. J Antimicrob

14 Soulie C, Marcelin AG, Ghosn J et al. HIV-1 X4/R5 co-receptor in viral

15 Soulie C, Lambert-Niclot S, Wirden M et al. Low frequency of HIV-1 tropism evolution in patients successfully treated for at least 2 years.

18 Martinez MA, Cabana M, Ibáñez A et al. Human immunodeficiency virus type 1 genetic evolution in patients with prolonged suppression of

19 Wagner TA, McKernan JL, Tobin NH et al. An increasing proportion of