Resistance to and killing by the sporicidal microbicide peracetic acid

Mark J. Leggett, J. Spencer Schwarz, Peter A. Burke, Gerald Mcdonnell, Stephen P. Denyer and Jean-Yves Maillard*

1Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; 2STERIS Corporation, 7405 Page Ave, St Louis, MO 63133, USA; 3STERIS Corporation, 5960 Heisley Rd, Mentor, OH 44060, USA

*Corresponding author. Tel: +44-2920-879088; Fax: +44-2920-874149; E-mail: maillardj@cardiff.ac.uk

Received 9 May 2014; returned 20 August 2014; revised 29 September 2014; accepted 13 October 2014

Objectives: To elucidate the mechanisms of spore resistance to and killing by the oxidizing microbicidal peracetic acid (PAA).

Methods: Mutants of Bacillus subtilis lacking specific spore structures were used to identify resistance properties in spores and to understand the mechanism of action of PAA. We also assessed the effect of PAA treatment on a number of spore properties including heat tolerance, membrane integrity and germination.

Results: The spore coat is essential for spore PAA resistance as spores with defective coats were greatly sensitized to PAA treatment. Small acid-soluble spore proteins apparently provide no protection against PAA. Defects in spore germination, specifically in germination via the GerB and GerK but not the GerA germination receptors, as well as leakage of internal components suggest that PAA is active at the spore inner membrane. It is therefore likely that the inner membrane is the major site of PAA’s sporicidal activity.

Conclusions: PAA treatment targets the spore membrane, with some of its activity directed specifically against the GerB and GerK germination receptors.

Keywords: spores, germination, PAA

Introduction

Some Gram-positive bacteria, such as certain Bacillus and Clostridium species, form a dormant cell type termed an endospore (spore) when encountering environmental stress such as nutrient starvation. Spores are metabolically dormant and exhibit resistance properties that are invariably greater than those of their vegetative cell type, making them highly resistant to many antimicrobial treatments including extremes of temperature, radiation and many toxic chemicals.1,2

In order to survive potentially long periods of metabolic dormancy where the spore is incapable of repair (reports vary greatly as to exactly how long a spore may remain viable in its dormant state),3,4 spores have a number of specific adaptations to minimize the damage sustained during this time. These include the outer spore coat, which has been shown to provide significant resistance against many oxidizing agents;5,6 a low core water content, which contributes to the spore’s resistance to some chemicals as well as to wet heat treatment;5,10 and the spore-specific small acid-soluble spore proteins (SASPs) of the α/β type, which saturate the spore DNA thereby providing protection against some DNA damaging chemicals, UV radiation and heat treatments.11–14

Oxidizing agents are increasingly finding utility in products designed for environmental disinfection. Hydrogen peroxide (liquid and vapour), chlorine dioxide, sodium hypochlorite and peracetic acid (PAA) are the active components in many such products used for hard surface and whole room disinfection and in antimicrobial wipes and are known to be sporicidal given the correct conditions and contact times. In this report, we use the spores of Bacillus subtilis to investigate the mechanism of sporicidal activity and of spore resistance to the oxidizing microbicidal PAA.

Materials and methods

Bacterial strains, growth conditions and spore preparation

The B. subtilis strains used in this study are all isogenic derivatives of strain 168. Strain PS533 is the WT and contains plasmid pUB110 carrying a kanamycin resistance marker. Strain PS578 (known as α/β-) also contains pUB110 but lacks genes sspA and sspB, which encode the two major α/β type SASPs.15 Strain PS3394 is defective in the cotE gene, which has been mostly replaced by a tetracycline resistance cassette, resulting in a defective spore coat. PS3394 also contains plasmid pUB110.6
All strains were routinely grown on LB medium (agar or broth; Fisher, UK) with or without antibiotic supplements (PS533/PS578: 10 µg/mL kanamycin; PS3394: 10 µg/mL kanamycin and 5 µg/mL tetracycline). Spores of all strains were prepared on 2x Schaeffer’s medium with glucose (SG) medium agar without antibiotic selection by inoculating with 0.2 mL of a growing culture of the relevant strain (at an OD$_{600}$ of ~1) and incubating at 37°C for 3–5 days. All growth was then scraped from the plates and cleaned as described previously.

Assessment of spore resistance

Spore survival was routinely assessed at 25°C and a spore titre of 109 cfu/mL. The microbicides used were PAA (0.025%, 0.05%, 0.1% or 0.2%) or NaOH (2 M), all prepared in deionized water. Spore resistance to moist heat was assessed by incubating spores in water at 85°C. After relevant contact times, samples were removed and diluted 1:100 in neutralizing solution: for PAA, sodium thiosulphate (20 g/L); for NaOH, KPO$_4$ buffer (50 mM, pH 7.5); and for moist heat, PBS (137 mM NaCl, 2.7 mM KCl, 4.3 mM Na$_2$HPO$_4$, 7H$_2$O and 1.4 mM KH$_2$PO$_4$) at room temperature for a minimum of 10 min. Neutralized aliquots were serially diluted (1:10) in sterile deionized water, plated onto LB agar (without antibiotics) and incubated at 37°C for 16–30 h before counting survivors.

For experiments preparing spore populations that had been partially inactivated (<99%) by PAA treatment, test solutions were neutralized in their entirety by diluting 1:10 in sodium thiosulphate (20 g/L) and incubating for 10 min and then filtered to harvest the spores. Samples were neutralized in fresh sodium thiosulphate (20 g/L) a further two times before washing three times in sterile PBS.

Spore recovery by lysozyme treatment

For some experiments, spores treated with various microbicides were chemically decoated as previously described but with incubation at 60°C, not 37°C and germinated in a hypertonic medium containing lysozyme.

Assaying dipicolinic acid (DPA) concentration in spores

Spores at an OD$_{600}$ of ~1, with or without PAA treatment, were autoclaved to release DPA from the spore core. DPA was then assayed from the supernatant as described previously.

Spore germination assays

The germination of spores treated or untreated with PAA was assessed over time by monitoring the drop in OD$_{600}$ using a Bioscreen C analyser. Spores were suspended at an OD$_{600}$ of ~1 in nutrient germinants [either 10 mM l-alanine in 50 mM Tris-HCl (pH 7.4) or the AGFK mixture composed of 12 mM l-asparagine, 13 mM l-glucose, 13 mM l-fructose and 12.5 mM KPO$_4$ buffer (pH 7.4)] and triplicate 200 µL aliquots of this spore suspension added to the wells of the proprietary honeycomb plates used for the Bioscreen analyser. Plates were incubated at 37°C with continuous shaking, with OD$_{600}$ readings taken every 2 min for 300 min. At the end of 300 min, samples were removed from at least one of the replicate wells for inspection by phase-contrast microscopy to ensure spores were not clumping (which can dramatically alter the OD) and to manually enumerate the germinated (phase dark) spores.

Statistical analysis

Data describing spore killing as a function of time were fitted to a Weibull microbial survival model using GInaFiT software optimized for the analysis of non-linear microbial inactivation data. The Weibull model used in the GInaFiT software describes microbial kill data as $\log_{10}(N_t) = \log_{10}(N_0) - (t/\beta)\mu$, where N_t is the number of cells surviving at time t, N_0 is the starting titre, t is time, β is a fitting parameter corresponding to the time required to reach 1 log reduction in survivors if linear kinetics are assumed, and μ is a shape parameter describing the direction and degree by which the kill curve deflects as the disinfection proceeds. GInaFiT accepts two arrays, time and log survivors, and outputs estimates for N_0, β and μ. We then used the parameters from these models to interpolate the time required to reach a 99.9% reduction in spore viability. Due to the rapid killing of strain PS3394 by PAA treatment, it was not possible to accurately estimate values for 90% or 99% reductions; therefore, values for 99.9% reduction were used for all strains and at all PAA concentrations tested.

The effect of PAA treatment on DPA release from spores was compared in the software package R 3.0.1 using a generalized linear model fitted with a Gaussian error and identity link function. Normal distribution of residuals was confirmed by visual examination of histograms, Q–Q plots and fitted values before the models were refined by stepwise deletions.

Results

Resistance of B. subtilis strains to varying concentrations of PAA

The PAA resistance of B. subtilis strains PS533 (WT), PS578 (α^-/β^-) and PS3394 (CotE$^-$) was assessed using a suspension test method. Strains PS533 and PS578 had similar resistance to 0.1% and 0.2% PAA (Figure 1 and Table 1); however, PS578 showed greater resistance than did PS533 at a PAA concentration of 0.05% (Table 1). Strain PS3394 was considerably more susceptible than strains PS533 and PS578 to PAA treatment at all concentrations tested (Table 1). Using the kill times calculated for 99.9% killing shown in Table 1, the concentration exponent (η) of PAA for each strain was calculated as 3.46, 3.53 and 1.43 for strains PS533, PS578 and PS3394, respectively. It should be noted that for strains PS533 and PS578, the kill curves show neither a clear shoulder nor a tailing effect, whereas the curves for PS3394 at all PAA concentrations tested showed a distinct tail after an initially rapid killing (Figure 1 and data not shown), presumably due to heterogeneity in the degree of coat loss in these mutants.

Spore recovery by lysozyme treatment

Spores treated with certain microbicides, such as NaOH, are rendered unable to germinate (most likely as a result of inactivation of the spore’s cortex lytic enzymes (CLE)) and consequently are recorded as killed using a standard testing method. However, such spores may be recovered by decoating and treatment with lysozyme. We therefore investigated the possibility that PAA-treated B. subtilis spores could be revived by lysozyme treatment. Spores killed to 89% or 96% by PAA showed no recovery when decoated and treated with lysozyme, whereas spores killed to 99.8% by NaOH showed considerable recovery following lysozyme treatment (Figure 2), as seen in a previous study. In order to exclude the possibility that damaged spores were killed by the decoating process, PAA-treated spores that had not undergone the decoating treatment were plated directly onto LB agar containing lysozyme at 1 µg/mL and similarly showed no recovery (data not shown).
Sensitization to normally sublethal heating

It has been demonstrated previously that spores treated with various oxidizing agents become sensitized to certain treatments, such as heating at 85°C.24 We therefore investigated the effect of heating in water at 85°C on the survival of PAA-treated spores.

Untreated WT spores showed virtually no killing following heating at 85°C for a period of 5 h, whereas PAA-treated spores were sensitized to this treatment, as >99% of the population was killed after 5 h (Figure 3).

Leakage of DPA from the spore core

Spores undergoing various treatments, especially moist heat, release some/all of their DPA from the spore core.23,25,26 We therefore assessed whether or not spores killed by PAA released any of their core DPA. Spores had significantly lower DPA concentrations in their core following PAA treatment when compared with untreated controls (Table 2; F[1,3] = 31, P < 0.001), amounting to a 29% release of DPA. We also investigated the leakage of DPA from spores, with and without PAA treatment, when heated in water at a normally sublethal temperature (85°C). DPA release from PAA-treated spores was significantly higher than from untreated controls (F[1,13] = 61.9, P < 0.001) and amounted to 60% of total core DPA (which represents much of the DPA remaining in the spore core following PAA treatment), whereas only 8%

Table 1. Calculated times to achieve 99.9% kill of *B. subtilis* spores at various concentrations of PAA

<table>
<thead>
<tr>
<th>PAA concentration (%)</th>
<th>PS533 (min)</th>
<th>PS578 (min)</th>
<th>PS3394 (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.025</td>
<td>NT</td>
<td>NT</td>
<td>6.8</td>
</tr>
<tr>
<td>0.05</td>
<td>182.48</td>
<td>233.10</td>
<td>1.8</td>
</tr>
<tr>
<td>0.1</td>
<td>36.39</td>
<td>32.74</td>
<td>0.62</td>
</tr>
<tr>
<td>0.2</td>
<td>1.51</td>
<td>1.74</td>
<td>0.36</td>
</tr>
</tbody>
</table>

NT, not tested.

Kill times were calculated using a Weibull model as described in the Materials and methods section. All goodness-of-fit estimates (R²-adjusted) for Weibull models were >0.97.

Figure 1. Killing of *B. subtilis* spores by 0.1% PAA. (a) Strains PS533 (WT), PS578 (α−/β−) and PS3394 (cotE−). (b) Killing of strain PS3394 as in (a), but with a shortened time axis. Data points represent mean values from two experiments. The broken line represents samples that fell below the level of detection at the indicated timepoint.

Figure 2. Recovery of microbiocide-treated spores by incubation in the presence/absence of lysozyme (in two separate experiments). Spores were treated with NaOH or PAA, giving killing rates of 99.8% for NaOH-1 and NaOH-2, 89.4% for PAA-1 and 96.3% for PAA-2. Microbicide-treated spores were incubated with (Lys) or without (NT) lysozyme.

Figure 3. Survival of WT (PS533) spores, with and without PAA treatment giving 97.7% spore killing, when heated in water at 85°C. Data points represent mean values from two experiments.
of core DPA was released from untreated controls following heating at 85°C (Table 2).

Germination of PAA-treated spores

Spores treated with PAA were monitored for defects of germination via the nutrient germinants L-alanine or the AGFK mixture. WT B. subtilis spores treated with PAA germinated relatively normally in L-alanine (Figure 4a), with 86% of spores germinating (as measured by phase-contrast microscopy, Table 2). However, germination in the AGFK mixture was greatly reduced in PAA-treated spores, relative to the untreated controls (Figure 4b), with only 39% of spores germinating within the 5 h experiment (Table 2).

Table 2. Various properties of B. subtilis spores treated with PAA germinated relatively

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Germination (%) after 300 min</th>
<th>DPA (µg/mL) released by<sup>a</sup></th>
<th>autoclaving</th>
<th>heating at 85°C (30 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>99</td>
<td>24.28 ± 0.55<sup>b</sup></td>
<td>1.94 ± 0.33</td>
<td></td>
</tr>
<tr>
<td>PAA<sup>c</sup></td>
<td>86</td>
<td>17.18 ± 0.67</td>
<td>14.66 ± 0.98</td>
<td></td>
</tr>
</tbody>
</table>

^aData represent mean ± SEM (n = 15).

^bThis value was used as 100% of spore DPA.

^cSpores treated with PAA to achieve <99% killing.

Discussion

The spore coat plays a significant role in resistance to many chemicals and especially to oxidizing agents.^{5,27–29} Similarly in this study, the spore coat was responsible for a significant proportion of WT spore PAA resistance. Where a defective spore coat is present (strain PS3394), the concentration exponent differs from the intact strains and suggests that the absence of a complete barrier exposes the spore to an alternative, more direct, killing mechanism.^{30,31}

It has been shown previously that not only do WT spores suffer no obvious DNA damage from treatment with PAA (as evidenced by lack of single- or double-strand breaks in their DNA and by the absence of auxotrophic and asporogenous mutants), but that α/β– spores similarly suffer no obvious damage to their DNA.³² In this study, a similar result has been obtained, where the WT and α/β– spores both had similar resistance to PAA. This suggests that SASPs are not a significant resistance factor against the sporidical activity of PAA, whereas they provide significant protection against other treatments, including hydrogen peroxide and moist heat.^{18,31,34} This investigation therefore supports the previous evidence³² that the sporidical activity of PAA is not due to damage to the spore’s nucleic acids and therefore PAA probably exerts its sporidical activity before it penetrates as far as the spore core.

Spore killing by strong alkali (NaOH) treatment is largely a result of the inactivation of spore CLE rendering them unable to progress beyond stage I of germination even when stimulated by nutrient germinants, as they are unable to degrade their cortex.^{23,35} However, even for NaOH-treated spores, cortex degradation can be accomplished by incubation in the presence of lysozyme, allowing the spores to complete germination and outgrowth and return to vegetative growth. PAA-treated spores could not be recovered by lysozyme treatment, indicating that its sporidical activity is not simply the result of inactivation of the spore’s CLE.

Since PAA killing appeared to be neither the result of damage to spore DNA nor CLE, evidence of damage to the spore’s inner membrane was sought, as previous investigations have indicated that treatment by other oxidizing agents damages spores in this manner.²⁶

Spore killing by moist heat, strong acid or ethanol (at elevated temperatures) is accompanied by release of DPA from the spore core,^{21,26} indicating the breach of spore permeability barriers, thought most probably to be the inner spore membrane.^{1,36} Treatment of spores with oxidizing agents tends not to cause the direct release of spore DPA, although DPA can be released more readily from such spores upon exposure to normally sublethal heat treatment.^{5–7,29} Treatment of WT B. subtilis spores with PAA in this study led to the release of ~29% of the total core DPA, indicating that PAA treatment directly altered the permeability of the inner spore membrane. Furthermore, as these spores were killed to ~98% by PAA.
treatment, it was concluded that DPA release is not a function of spore killing as some spores are apparently dead and yet have released no DPA.

Most of the DPA remaining in the spore core following PAA treatment was released when spores were incubated at 85 °C, which caused little DPA release from untreated spores. That PAA-treated spores leak DPA from their core on normally sublethal heating strongly suggests that the membrane has suffered damage, which, whilst not overwhelming the permeability barrier of the membrane entirely, has weakened it to such an extent that it is breached upon heating. Presumably, given the observation above that DPA release does not correlate precisely with PAA kill, such membrane damage is also severe enough that these spores are unable to complete outgrowth and are non-viable, although they can, to a great extent, still germinate.

Previous studies have shown that altering either the level of saturation of membrane fatty acids or the lipid composition of the spore membrane has minimal effects on spore resistance to oxidizing agents, although this does not rule out lipids as a target for oxidative damage, and therefore a possible site of DPA release from the spore core. It has also been suggested that membrane proteins, such as the nutrient germination receptors (GRs), or the SpoVA proteins which are thought to reside within the spore membrane and are very likely to be involved in release of DPA (in the form of a 1:1 chelate with calcium ions) from the spore during germination, could also be targets for oxidative damage.

Germination by nutrient germinants in B. subtilis is triggered via GRs, each comprising three individual proteins, located in or at the spore inner membrane. The GerA receptor recognizes and binds L-alanine or L-valine only, whereas the GerB and GerK receptors apparently interact to allow germination via a mixture of AGFK. PAA treatment altered B. subtilis' response to germination via nutrient germinants, both reducing the rate at which spores germinated and altering the number of spores completing germination within the observed time frame. Whilst it is recognized that spores treated with oxidizing agents often germinate poorly in response to some germinants, this study clearly shows that PAA treatment caused a more pronounced alteration of spore germination via the AGFK mixture compared with germination in the presence of L-alanine. These results suggest that (i) PAA treatment is preventing germinant molecules from accessing the GRs in the inner membrane, or (ii) PAA is somehow altering the ability of GRs to respond to their trigger molecules.

Given the relatively normal germination of PAA-treated spores in the presence of L-alanine, we assume that L-alanine is able to reach its receptor, GerA. It is therefore reasonable to assume that the AGFK germinants are also able to reach their receptor. Thus, it would appear that PAA is damaging some/all of the GerB and GerK GRs such that they no longer respond to their trigger molecules or at least respond more slowly. This would be analogous to the situation found in superdormant spores, where spores having fewer GRs for a given germinant germinate very slowly. As for the reasons why GerB and GerK are apparently more susceptible to PAA treatment than GerA, there could be several explanations: (i) there are more of GerB and GerK present in the inner membrane, relative to GerA, thus making GerB/GerK more likely to be damaged by PAA simply by frequency of presence; (ii) the amino acid make-up of GerB/GerK makes them more susceptible to oxidation by PAA than GerA; and/or (iii) a greater portion of the GerB/GerK receptor complex is exposed at the surface of the membrane compared with GerA.

In a recent study, it was identified that GerA is in fact the most abundant GR in the spore with ~1100 molecules/spore, with GerB and GerK both present at ~700 molecules/spore. However, taking into account that both GerB and GerK are required for germination with AGFK, we can assume that there are a total of ~1400 molecules/spore available as a target for PAA, which is slightly higher than the ~1100 GerA molecules. Whether this difference is sufficient to cause the differing response in germination seen in this study is not known; however, it is also worth noting that there are other protein molecules present in the spore inner membrane at far higher number than those of the GRs, which could presumably also suffer damage from oxidizing agents such as PAA but were not assessed in this study. Indeed, a recent study showed that treatment of spores with hypochlorite or hydrogen peroxide caused a lengthening of the time taken for spores to release their DPA during germination, perhaps indicating some damage to the SpoVA proteins in the inner membrane, which are involved in DPA release during germination.

Superdormant spores have been shown to possess greater resistance to moist heat than normal spores, although this was thought to be a reflection of the lower core water content of superdormant spores rather than due to any other spore properties. It would be interesting to characterize the oxidizing agent resistance properties of superdormant spores, which have been shown to contain lower levels of nutrient GRs, as one would expect that superdormant spores for AGFK germination may be more resistant to PAA, assuming that damage to GerB/GerK contributes to the sporicidal activity of PAA. A recent study of superdormant spores under germination with the non-nutrient germinant dodecylamine found that whilst these superdormant spores did contain lower GR levels, they were no more resistant to treatment with sodium hypochlorite than normal WT spores; however, this was not the primary focus of the investigation and was not studied in detail.

Whilst sequence data are available for GRs in B. subtilis and other spore formers, there is limited information in the literature regarding their structures and/or membrane topology. It is highly probable (based on sequence data) that the A and B GR subunits are integral membrane proteins, whilst the C subunit is not an integral membrane protein but is located on the membrane periphery. Further investigation of these data may offer some suggestion as to the apparently different susceptibility of the different GRs to the activity of PAA.

That PAA is acting to disrupt nutrient germination in B. subtilis seems likely, although whether this activity is the major source of or even contributes to the sporicidal activity of this microbicide remains unclear. It is also unclear whether activity against membrane-associated proteins alone would be sufficient to destabilize the membrane such that it can no longer function when the spore undergoes germination, thus preventing outgrowth.

This study suggests that PAA kills spores by causing damage to the inner spore membrane, as is thought to be the case for other oxidizing agents. It appears also that the membrane proteins GerB and GerK are damaged by PAA treatment, possibly contributing to the sporicidal activity of PAA.
Acknowledgements

We would like to thank Professor Peter Setlow for donating the B. subtilis strains used in this study and for helpful comments during the project and Dr Bettina Schelkle for assistance with statistical analysis.

Funding

The work presented in this communication was funded by a knowledge transfer partnership between Cardiff University and STERIS Corporation. Additional funding was provided by STERIS Corporation.

Transparency declarations

J. S. S., P. A. B. and G. M. have shares in STERIS Corporation. All other authors: none to declare.

References

