Amiodarone increases positive-strand RNA virus replication *in vitro*: implications for its use in patients with viral infections

Cristiano Salata1,2, Denis Munegato3, Elena Piccoli1, Arianna Calistri1, Cristina Parolin1, Ali Mirazimi2–4, Aldo Baritussio5 and Giorgio Palu1*

1Department of Molecular Medicine, University of Padova, Padova, Italy; 2Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden; 3Department for Laboratory Medicine, Karolinska Institute, Huddinge/Stockholm, Sweden; 4National Veterinary Institute, Uppsala, Sweden; 5Clinica Medica 1, Department of Medicine, University of Padova, Padova, Italy

*Corresponding author. Tel: +39-(0)498272350; Fax: +39-(0)498211997; E-mail: giorgio.palu@unipd.it

Sir,

Amiodarone, a cationic amphiphilic drug, is a widely used antiarhythmic agent endowed with anti-infective properties.1 Recently, at concentrations close to serum levels reached in patients, it has been shown to inhibit Ebola virus infection *in vitro* by interfering with the viral entry step.2,3 Amiodarone accumulates in cell membranes and acidic organelles, inducing changes that recapitulate the phenotype observed in Niemann–Pick type C disease.1 Interestingly, the inhibitory effect of amiodarone on Ebola virus infection appears to correlate with its ability to induce a Niemann–Pick type C-like phenotype.3 To counteract the 2014 outbreak of Ebola virus disease (EVD) in West Africa, the WHO Ebola Response Roadmap focused on ‘accelerated development and clinical evaluation of promising experimental interventions’. In this context, several clinical trials were announced by the end of 2014, among which one aimed to investigate the effect of amiodarone in patients with EVD.4 To clarify amiodarone antiviral properties, we studied its effect on infections due to Crimean–Congo haemorrhagic fever virus, an enveloped negative-stranded RNA virus, dengue virus serotype 4 (DENV4), an enveloped positive-stranded RNA virus and enterovirus B362 (EV8362), a naked positive-stranded RNA virus. The effect on viral release was investigated using the same experimental setting previously employed for Ebola virus.3 Vero cells, pretreated for 16 h with 5 and 10 µM amiodarone, were infected with the different viruses at the appropriate moi, cultured in the absence of amiodarone pretreatment (data not shown). It has been demonstrated that autophagy modulates the replication of RNA viruses6 and enterovirus 71-induced autophagy increases viral replication and pathogenesis.7 Thus, the increased replication of EV8362 could be explained by the amiodarone-induced autophagy.8,9 Although additional studies in *vitro* and in *vivo* on the effects of amiodarone on enterovirus and other positive-stranded RNA viruses are required, the possibility of enterovirus coinfection in patients with EVD should be taken into account in clinical trials involving amiodarone. Furthermore, infection with enterovirus should also be considered in the vast cohort of patients treated with amiodarone for cardiac arrhythmias. Finally, it appears that cationic amphiphilic drugs, in general, should be studied for possible interference with the life cycle of clinically important positive-stranded RNA viruses.

Table 1. Amiodarone differentially affects viral progeny release of negative-strand and positive-strand RNA viruses

<table>
<thead>
<tr>
<th>Amiodarone (µM)</th>
<th>CCHFV (focus-forming units/mL)</th>
<th>DENV4 (pfu/mL)</th>
<th>EV8362 (pfu/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10^6</td>
<td>3.8 × 10^5</td>
<td>1.3 × 10^5</td>
</tr>
<tr>
<td>5</td>
<td>7.4 × 10^8</td>
<td>6.0 × 10^5</td>
<td>2.3 × 10^6</td>
</tr>
<tr>
<td>10</td>
<td>3.5 × 10^8</td>
<td>6.6 × 10^5</td>
<td>2.7 × 10^6</td>
</tr>
</tbody>
</table>

CCHFV, Crimean–Congo haemorrhagic fever virus; pfu, plaque-forming unit. Values represent the mean of two replicates of a representative experiment performed for each virus. The experiments were performed at least three times for each virus.

References

Funding

This work was supported by University of Padova grants (ex 60% to C. S., A. C. and A. B. and Progetti di Ateneo 2008 to A. B.), EScential (Infect-ERA) and Swedish Research Council grants to A. M., and Region Veneto grants to C. P. and G. P.

Transparency declarations

None to declare.
Dolutegravir-induced colitis in an HIV-infected patient

Sara H. Bares¹*, Uriel S. Sandkovsky¹, Geoffrey A. Talmon², Grant F. Hutchins³, Susan Swindells¹ and Kimberly K. Scars¹

¹Department of Internal Medicine/Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA; ²Department of Pathology, University of Nebraska Medical Center, Omaha, NE, USA; ³Department of Internal Medicine/Gastroenterology, University of Nebraska Medical Center, Omaha, NE, USA; ⁴Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA

*Corresponding author. Tel: +1-402-559-8218; Fax: +1-402-553-5527; E-mail: sara.bares@unmc.edu

Sir,

Many of the gastrointestinal (GI) conditions associated with HIV disease have become less frequent over the past two decades. Diarrhoea from opportunistic infections has become less common, and HIV-associated diarrhoea is now more often due to non-infectious causes such as ART-related adverse events and HIV enteropathy.¹ Diarrhoea associated with ART is most commonly caused by PIs, which may damage the intestinal epithelial barrier and/or alter chloride ion secretion. Less is known about the diarrhoea associated with the other classes of ART.

Newer antiretroviral agents offer improvements in potency and activity as well as tolerability. Dolutegravir was approved by the US FDA in August 2013 and is currently recommended as initial treatment in HIV-infected patients, both as part of the fixed-dose combination tablet including abacavir/lamivudine/dolutegravir and separately with tenofovir/emtricitabine.² The efficacy of dolutegravir has been demonstrated in several randomized clinical trials (SPRING-1, SPRING-2, SINGLE, FLAMINGO and SAILING).³⁻⁷ In a recent safety review of dolutegravir, nausea, diarrhoea and headache were the most commonly reported treatment-related adverse effects. Diarrhoea occurred more often in patients on PI-based therapy (darunavir/ritonavir) than in those on dolutegravir, and the diarrhoea observed with dolutegravir was generally mild in intensity and typically did not prompt discontinuations or changes in treatment.³⁻⁷ Notably, treatment-emergent diarrhoea of at least moderate intensity occurred in <1% of patients receiving dolutegravir.⁵⁻⁷

We report the case of a woman with chronic HIV infection who, after 18 months of treatment with abacavir/lamivudine and efavirenz, switched to abacavir/lamivudine and dolutegravir to accommodate a new job with a varied schedule including night shifts. The patient’s CD4 cell count was 780 cells/mm³ and HIV RNA concentration was <20 copies/mL prior to making the ART change. Her medical history included chronic kidney disease stage 3, hyperlipidaemia, hypothyroidism, osteopenia and allergic rhinitis. Medications aside from ART included alendronate, cholecalciferol, levothyroxine, loratadine, montelukast and pravastatin, all of which she had been taking for at least 2 years.

Approximately 3 weeks after the change from efavirenz to dolutegravir, she developed moderate diarrhoea characterized by 6–10 loose watery stools per day associated with urgency and occasional incontinence. She had no fevers or chills and denied any anorexia, nausea, vomiting or abdominal pain. She denied any sick contacts and had not received any recent antimicrobials or other new medications. The results of initial evaluations, including a stool assay for Clostridium difficile and a multiplex PCR test using the FilmArray GI Panel, which detects 22 common viruses, bacteria and parasites that cause infectious diarrhoea, were negative. Pathogens included in the FilmArray GI Panel are as follows: Campylobacter (jejuni, coli and upsaliensis), Clostridium difficile (toxin A/B), Plesiomonas shigelloides, Salmonella, Yersinia enterocolitica, Vibrio species (including a specific target for Vibrio cholerae), enteroaggregative Escherichia coli, enteropathogenic E. coli, enterotoxigenic E. coli lt/st, Shiga-like toxin-producing E. coli stx1/stx2 (including a specific target for E. coli O157), Shigella/enteroinvasive E. coli, adenovirus F40/F41, astrovirus, norovirus GI/GII, rotavirus A, sapovirus (I, II, IV and V), Cryptosporidium, Cyclospora cayetanensis, Entamoeba histolytica and Giardia lamblia.

The patient’s symptoms persisted for an additional 2 weeks, so she underwent colonoscopy with biopsy. The colon and terminal...