Autotransplantation of cryopreserved ovarian tissue in cancer survivors and the risk of reintroducing malignancy: a systematic review

L. Bastings1,*, C.C.M. Beerendonk1, J.R. Westphal1, L.F.A.G. Massuger1, S.E.J. Kaal2, F.E. van Leeuwen3, D.D.M. Braat1, and R. Peek1

1Department of Obstetrics and Gynaecology (791), Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands 2Department of Medical Oncology (452), Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands 3Department of Epidemiology, The Netherlands Cancer Institute, PO Box 90203, 1006 BE Amsterdam, The Netherlands

*Correspondence address. Tel: +31-24-361-47-48; Fax: +31-24-3617177; E-mail: l.bastings@obgyn.umcn.nl

Submitted on September 23, 2012; resubmitted on March 29, 2013; accepted on April 8, 2013

TABLE OF CONTENTS

- Introduction
- Methods
 - Study design
 - Study populations
 - Search strategy
 - Study selection
 - Data collection
 - Presentation of results
- Results
 - Study selection
 - Tumours of the breast
 - Tumours of the genital tract
 - Tumours of the gastrointestinal tract
 - Lymphomas
 - Leukaemia
 - Tumours of the urinary tract
 - Tumours of the respiratory tract
 - Melanoma and malignant blue naevus
 - Bone and soft tissue tumours
 - Other tumours
- Discussion
 - Principal findings and implications for clinical practice
 - Appropriateness of included studies
 - Implications for future research
 - Implications for fertility preservation choices
 - Registration of autotransplantation procedures
- Conclusion
BACKGROUND: The risk of recurrent oncological disease due to the reintroduction of cancer cells via autotransplantation of cryopreserved ovarian tissue is unknown.

METHODS: A systematic review of literature derived from MEDLINE, EMBASE and the Cochrane Library was conducted. Studies on follow-up after autotransplantation; detection of cancer cells in ovarian tissue from oncological patients by histology, polymerase chain reaction or xenotransplantation; and epidemiological data on ovarian metastases were included.

RESULTS: A total of 289 studies were included. Metastases were repeatedly detected in ovarian tissue obtained for cryopreservation purposes from patients with leukemia, as well as in one patient with Ewing sarcoma. No metastases were detected in ovarian tissue from lymphoma and breast cancer patients who had their ovarian tissue cryopreserved. Clinical studies indicated that one should be concerned about autotransplantation safety in patients with colorectal, gastric and endometrial cancer. For patients with low-stage cervical carcinoma, clinical data were relatively reassuring, but studies focused on the detection of metastases were scarce. Oncological recurrence has been described in one survivor of cervical cancer and one survivor of breast cancer who had their ovarian tissue autotransplanted, although these recurrences may not be related to the transplantation.

CONCLUSIONS: It is advisable to refrain from ovarian tissue autotransplantation in survivors of leukemia. With survivors of all other malignancies, current knowledge regarding the safety of autotransplantation should be discussed. The most reassuring data regarding autotransplantation safety were found for lymphoma patients.

Key words: autotransplantation / ovarian tissue / fertility preservation / safety / cancer

Introduction

The past decade has seen a rapid increase in the number of ovarian tissue cryopreservation and autotransplantation procedures performed worldwide, resulting in 21 live births being reported from several countries (Donnez et al., 2012). As infertility due to premature ovarian failure may arise as a consequence of chemo- or radiotherapy (Larsen et al., 2003; Borgmann-Staudt et al., 2012; Morgan et al., 2012), oncological diseases are the leading indications for ovarian tissue cryopreservation (Feigin et al., 2007; Poirot et al., 2007; Anderson et al., 2008; Revel et al., 2009; Oktay and Oktem, 2010; Donnez and Dolmans, 2011; Lawrenz et al., 2011; Schmidt et al., 2011). Ovarian tissue harvesting is preferably performed before the start of gonadotoxic treatment. As neither ovarian stimulation nor a partner is required, this specific fertility preservation strategy especially holds promise for adolescent and even prepubertal girls, as well as for women who cannot delay oncological therapy (Jadoul et al., 2010; Donnez and Dolmans, 2011).

Despite its clinical success, the procedure of autotransplantation after ovarian tissue cryopreservation comes with a significant issue of concern. Namely, ovarian grafts from oncological patients may harbour cancer cells and autotransplantation of such grafts could theoretically lead to recurrence of oncological disease (Reid and Marsden, 1980; Shaw et al., 1996; Meirov et al., 1998, 2008; Kim et al., 2001; Seshadi et al., 2006; Sanchez-Serrano et al., 2009; Abir et al., 2010; Azem et al., 2010; Dolmans et al., 2010; Rosendahl et al., 2010, 2011b; Greve et al., 2012). As the ovarian strips that are analysed by histology or polymerase chain reaction (PCR) are no longer available for transplantation purposes, it remains unclear whether the strips that are actually transplanted are also devoid of cancer cells (Bastings et al., 2013).

The magnitude of the risk of reintroduction of a malignancy in specific situations is currently unknown, although it has been hypothesized to be influenced by cancer type and stage, the mass of malignant cells transferred, and the time of ovarian tissue harvesting in relation to oncological treatment (Kim, 2003; Akar and Oktay, 2005; Sonmezer et al., 2005; Rosendahl et al., 2010; Greve et al., 2012). Malignant diseases have been classified into three categories representing a low, intermediate or high risk of ovarian involvement (Sonmezer and Oktay, 2004; Akar and Oktay, 2005; Sonmezer et al., 2005). Unfortunately, the exact magnitude of the risk of ovarian metastasis for these different categories remains unspecified as is the selection of relevant data supporting these classifications.

The recent development in the field of ovarian tissue autotransplantation has fuelled the urgency for reliable information on the safety of the procedure. With cryopreservation and autotransplantation procedures already being performed on a large scale during the last decade (Akar and Oktay, 2005; Donnez et al., 2006, 2012; Meirov et al., 2007a, b; Anderson et al., 2008; Oktay and Oktem, 2010; Lawrenz et al., 2011; Schmidt et al., 2011), the number of cancer survivors requesting autotransplantation is expected to increase considerably in the near future. Exact figures on the number of cryopreservation procedures performed are unknown, as there is no international registry to which these procedures should be reported. Nevertheless, over 2500 cryopreservation procedures have been performed (C. Diaz and A. Pellicer, personal communication; K. Oktay, personal communication; Feigin et al., 2007; Meirov et al., 2007a, b; Poirot et al., 2007; Anderson et al., 2008; Sanchez et al., 2008; Revel et al., 2009; Jadoul et al., 2010; Rosendahl et al., 2011b; Montag et al., FertiProtekt). Other factors possibly stimulating the demand for ovarian tissue autotransplantation are the increasing cancer incidence and improving cancer survival in the adolescent and young adult population (Aben et al., 2012). Finally, postponement of parenthood in Western countries (Mills et al., 2011) may enlarge the group of newly diagnosed cancer patients with an interest in fertility preservation options.

Ideally, patients requesting autotransplantation, as well as newly diagnosed cancer patients who consider cryopreservation of their ovarian tissue, should be comprehensively counselled on the risks of recurrent disease after autotransplantation when compared with their risk of oncological relapse when no autotransplantation would be performed (Kolp and Hubayter, 2011). The current study aims to systematically review all articles containing relevant information on the risk of reintroducing malignancy via ovarian transplants. In addition, this study will reveal gaps in the current knowledge.

Data from autotransplantation procedures performed thus far seem the most appropriate when it comes to assessing autotransplantation...
safety. These studies, however, are relatively scarce and suffer from a short follow-up and low numbers of patients. Therefore, other parameters that can serve as a proxy for the risk of recurrent malignancy after autotransplantation will be taken into account. These include studies aimed at the detection of cancer cells in ovarian tissue from oncological patients by means of histology, PCR or xenotransplantation, as well as clinical or autopsy studies assessing the frequency of ovarian metastases in different oncological diseases.

Methods

Study design

We aimed to identify peer-reviewed studies meeting one of the following designs:

(i) Studies describing the follow-up of cancer survivors after autotransplantation of cryopreserved ovarian tissue.
(ii) Studies focussing on detection of residual cancer cells, in the ovarian tissue of oncological patients who had ovarian tissue cryopreservation, by histology, PCR or xenotransplantation.
(iii) Studies in which ovarian involvement is reported for a group of cancer patients. The study populations from these studies consisted of cancer patients who have not had ovarian tissue cryopreservation. Both clinical studies and autopsy studies were included.
(iv) Case reports and case series reporting on ovarian metastases in cancer patients. These studies were included only when no ovarian involvement was described for the specific tumour type and stage from clinical studies or studies focussing on the detection of residual malignant cells in ovarian tissue from cancer patients.

Study populations

Studies focussing on detection of residual disease in ovarian tissue

Study populations of these studies consisted of women who were part of a fertility preservation programme. All patients were premenopausal oncological patients who applied for ovarian tissue cryopreservation.

Clinical studies and case reports

Regarding clinical studies, we aimed to identify studies describing patients whose clinical situation and pattern of tumour spread and metastasis would best represent patients applying for ovarian tissue cryopreservation. Studies were excluded if:

(i) their patient population included women with a premalignancy, primary ovarian cancer, widespread intraperitoneal malignant disease or a tumour directly adhering to the ovary;
(ii) they only reported on ovarian metastases as the first site of recurrence;
(iii) their patient population included women with a hereditary cancer syndrome associated with an increased risk of ovarian cancer, such as a BRCA1 or BRCA2 mutation, Lynch type II or Peutz Jeghers syndrome.

Studies including patients with tumours that already showed spread or metastases to other sites than the ovary were included only when a homogeneous study group was described.

Age also seems to be a relevant factor when it comes to the pattern of tumour spread, as it has been shown that patients with breast, intestinal or gastric cancer with ovarian spread are significantly younger than patients without ovarian involvement (Lerwill and Young, 2011). In multivariate analyses of two studies concerning cervical and gastric cancer, age proved to be a risk factor for ovarian metastasis (Kim et al., 1999; Landoni et al., 2007). For this reason, studies including patients who were post-menopausal at the time of oncological diagnosis were not taken into account. When no menstrual status was reported, female patients <51 years of age at the time of oncological diagnosis were included, based on the observation that the median age of onset of menopause in Europe and Northern America ranges from 50.1 to 52.8 years (Pecorelli, 2009).

Autopsy studies

Data on the prevalence of ovarian involvement obtained from deceased patients’ autopsy reports presumably represent an upper extreme. For this reason, autopsy studies reporting on post-mortem examination of female cancer patients, including the investigation of the ovaries, were included. Studies describing populations containing the following types of patients were excluded:

(i) patients with a hereditary cancer syndrome associated with an increased risk of ovarian cancer, such as a BRCA1 or BRCA2 mutation, Lynch type II or Peutz Jeghers syndrome;
(ii) patients with primary ovarian cancer;
(iii) patients who were post-menopausal or, if no menstrual status was given, older than 51 years of age at diagnosis.

Subgroups

When only part of a study population met the inclusion criteria, relevant subgroup(s) were analysed if possible. For instance, from studies describing both pre- and post-menopausal patients, only data regarding premenopausal women were extracted.

Search strategy

Relevant studies were identified from MEDLINE (using the PubMed database), EMBASE and the Cochrane Library, without any restrictions on the date of publication. A combination of Medical Subject Headings (MeSH) or Emtree terms and free text words, formulated after consultation of an information specialist from the Radboud University Nijmegen Library, was used to generate a list of citations. The search was restricted to articles written in the English language and was last updated mid-June 2012. Details on the search strategy for PubMed are displayed in Table I. This strategy was modified for EMBASE and the Cochrane Library. We complemented our electronic search with a manual search of bibliographies from relevant articles, aiming to identify additional relevant studies not captured by our electronic search.

Study selection

The selection of relevant studies was independently conducted by two reviewers (L.B. and R.P.). First, titles and abstracts were examined to decide whether the study might fulfil the predefined selection criteria. Secondly, full texts from selected articles were read to make a final inclusion or exclusion decision. When one or both reviewers were not sure about this final decision, consensus was resolved by discussing the article together or by arbitration by a third reviewer (C.C.B.).

Data collection

Data extraction was performed by two authors independently (L.B. and R.P) and disagreement was resolved by consensus or arbitration by a third reviewer (C.C.B.) or by discussing the paper with a medical oncologist (S.E.K.) or gynaecological oncologist (L.F.M.). The following information was recorded from the included studies: author’s names, publication year, study design, patient and tumour characteristics, oncological treatment and outcome of ovarian involvement. Additionally, duration of follow-up was recorded in follow-up studies after autotransplantation and in xenotransplantation studies. In studies reporting on analysis of ovarian tissue, diagnostic tools were also recorded.
Presentation of results

For each tumour type, all relevant publications were discussed. Tumour stages (AJCC TNM classification, FIGO stages, Duke’s stages and Bormann stages) as described in the results may not reflect current classifications, as these are subjected to regular revisions. When tumour stages were not reported for the relevant subgroup of a particular study, tumour characteristics are presented for the study population as a whole. Data were not pooled due to the large methodological and clinical heterogeneity of the included studies, both due to different study designs and large differences in patient populations regarding tumour stages and other characteristics.

Results

Study selection

Our electronic search yielded 16 137 hits and 223 additional articles were derived from bibliographies. A flow scheme of our selection process is outlined in Fig. 1, following the PRISMA Statement (Preferred Reporting Items of Systematic Reviews and Meta-Analyses; Moher et al., 2009). After exclusion of 4855 duplicates and 9895 articles on title or abstract basis, the full texts of the remaining 16 160 articles were screened.

A total of 1321 studies did not meet our eligibility criteria and were therefore excluded. This group consisted of 262 studies that did not provide original data or that did not meet one of the study types mentioned in our eligibility criteria. Although describing (the follow-up of) a group of cancer patients, 522 clinical and autopsy studies were excluded since they did not report on ovarian metastases or even excluded patients with ovarian involvement. A total of 377 studies did not meet the criteria for age or menstrual status. There were 153 case reports excluded as they indicated ovarian involvement in a malignancy on which information was already available from clinical studies. Finally, from a total of seven studies, no full text version could be obtained by contacting the authors or by consulting international libraries. The remaining 289 articles were included in this review.

Tumours of the breast

Several cases of ovarian tissue autotransplantation in breast cancer patients have been described. Of these women, one had a local breast cancer recurrence (Rosendahl et al., 2011a). Obviously, this relapse may not have any relation to the autotransplantation of the ovarian tissue, as oncological recurrences do also occur spontaneously. Unfortunately, the authors did not explicitly state whether this ‘local recurrence’ referred to a recurrence in the breast or a recurrence near the ovarian transplant.

An additional breast cancer survivor was reported to be free of disease 18 months after transplantation (Sanchez-Serrano et al., 2009). Other reports did not explicitly state the health status of their patients during follow-up, although these patients are likely to be free of disease since most of them were pursuing pregnancy (Oktay et al., 2004; Andersen et al., 2011a). Obviously, this relapse may not have any relation to the autotransplantation of the ovarian tissue, as oncological recurrences do also occur spontaneously. Unfortunately, the authors did not explicitly state whether this ‘local recurrence’ referred to a recurrence in the breast or a recurrence near the ovarian transplant.
et al., 2008; Kim et al., 2009; Oktay and Oktem, 2010; Sanchez-Serrano et al., 2010; Schmidt et al., 2011; Kim, 2012). The maximum duration of follow-up after autotransplantation was 19 months (Sanchez-Serrano et al., 2010).

Histological examination and xenotransplantation of ovarian tissue from breast cancer patients have provided reassuring results (Table II). Two clinical studies indicated ovarian metastases in breast cancer patients, although the study with the largest population reported a very low percentage. However, results from autopsy studies suggested that ovarian metastases are fairly common in advanced breast cancer. As no explicit information on BRCA testing was reported in the clinical and autopsy studies, it remains unclear whether BRCA patients were part of the studies.

Tumours of the genital tract

Cervical carcinoma

Kim et al. (2004, 2009) have reported a total of four procedures of ovarian tissue autotransplantation in cervical cancer survivors (Kim, 2012; C. Diaz and A. Pellicer, personal communication; K. Oktay, personal communication). Histological analysis showed no ovarian involvement in these patients (Kim et al., 2004, 2009). One patient had an oncological relapse and died shortly after autotransplantation. Although specific information about the nature of this oncological recurrence cannot be found in the publication, the authors do not suspect the relapse to be a result from the autotransplantation, but consider it to be arisen spontaneously (Kim, 2012; C. Diaz and A. Pellicer, personal communication; K. Oktay, personal communication). Despite a maximum period of 7.5 years after ovarian tissue autotransplantation, the health status of the other patients was not described (Kim, 2012).

Apart from these autotransplantations, results were available from histological examination for only a small group of patients, as well as from clinical studies (Table III). Whereas most clinical studies reported low percentages of ovarian involvement in their populations, two studies reported metastases in more than 4% of the patients in their (sub)populations: one study with only 14 patients and another study with a subgroup of 146 premenopausal adenocarcinoma patients (Natsume et al., 1999; Nakanishi et al., 2001).

Endometrial carcinoma

One can hypothesize that patients suffering from endometrial cancer may not prefer cryopreservation of ovarian tissue, especially when facing hysterectomy or pelvic irradiation as cancer treatment. Nevertheless, these patients may wish to fulfill their child wish with the help of a surrogate mother in the future. Presumably due to the nature of the disease and its treatment, ovarian tissue autotransplantation has not been reported in endometrial cancer patients. Data from histological

![Figure 1: PRISMA flow chart of the systematic review process.](https://academic.oup.com/humupd/article-abstract/19/5/483/611877/159905)
<table>
<thead>
<tr>
<th>First author, year</th>
<th>Sample size</th>
<th>Assessment</th>
<th>Menstrual status or age (years)</th>
<th>Characteristics: Study group</th>
<th>Characteristics: Patients with ovarian metastasis</th>
<th>Oncological therapy: Study group</th>
<th>Ovarian metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histology or PCR (OTC patients)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azem et al. (2010)</td>
<td>13</td>
<td>Histology/Histochemistry Fresh ovarian tissue</td>
<td>Premenopausal</td>
<td>OTC patients</td>
<td>--</td>
<td>No CT or RT</td>
<td>0%</td>
</tr>
<tr>
<td>Rosendahl et al. (2011b)</td>
<td>51</td>
<td>Histology/immunohistochemistry Cryopreserved and thawed ovarian tissue</td>
<td>Premenopausal</td>
<td>OTC patients</td>
<td>Median tumour size 18 mm (5–75) (Data available for n = 47), N1: 44% (Data available for n = 44)</td>
<td>--</td>
<td>NR</td>
</tr>
<tr>
<td>Sanchez-Serrano et al. (2009)</td>
<td>69</td>
<td>Histology/immunohistochemistry Fresh ovarian tissue n = 63; Cryopreserved and thawed tissue n = 6</td>
<td>Premenopausal</td>
<td>OTC patients</td>
<td>Exclusion: BRCA1/2 or HER2neu mutation carriers ER+: 76.2%; PR+: 69.7%; N0: 49.2%; N1: 50.8%</td>
<td>--</td>
<td>17% received CT before OTC</td>
</tr>
<tr>
<td>Xenotransplantation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosendahl et al. (2011a)</td>
<td>9</td>
<td>Xenotransplantation of cryopreserved and thawed ovarian cortex into immunodeficient nude mice. Histology 4 weeks after xenotransplantation</td>
<td>Premenopausal</td>
<td>OTC patients</td>
<td>--</td>
<td>NR</td>
<td>0%</td>
</tr>
<tr>
<td>Clinical studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecca et al. (1980)</td>
<td>15</td>
<td>Histology after therapeutic oophorectomy</td>
<td>Premenopausal</td>
<td>NR</td>
<td>NR</td>
<td>Radical mastectomy (all patients), RT, CT, hormonal therapy</td>
<td>46.7% (7/15)</td>
</tr>
<tr>
<td>Lee et al. (2010a, b)</td>
<td>406</td>
<td>Clinical follow-up (mean 74 ± 48.19 months)</td>
<td>≤ 35</td>
<td>Patients with IDC (Otherwise NR for subgroup)</td>
<td>NR</td>
<td>NR for subgroup</td>
<td>IDC: 0–0.2% (max 1/406)*</td>
</tr>
<tr>
<td>Autopsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bumpers et al. (1993)</td>
<td>15</td>
<td>Autopsy; evaluation of medical records</td>
<td>< 50</td>
<td>Died of disseminated ILC</td>
<td>NR</td>
<td>NR</td>
<td>46.7% (7/15)</td>
</tr>
<tr>
<td>Kyono et al. (2010)</td>
<td>648</td>
<td>Autopsy</td>
<td>< 41</td>
<td>NR</td>
<td>NR</td>
<td>24.2% (157/648) 0% (0/3) Age 11–20: 19.4% (14/72) Age 21–30: 25.0% (143/573) Age 31–40</td>
<td></td>
</tr>
</tbody>
</table>

OTC, ovarian tissue cryopreservation; ILC, infiltrating lobular carcinoma of the breast; IDC, infiltrating ductal carcinoma of the breast; LN, lymph node, CT, chemotherapy, RT, radiotherapy; max, maximum; NR, not reported.

*An exact percentage of ovarian involvement could not be derived from these studies, as age or menopausal status was not provided for the women with ovarian metastases.
Table III Epidemiological data from cervical cancer studies.

<table>
<thead>
<tr>
<th>First author, year</th>
<th>Sample size</th>
<th>Assessment</th>
<th>Menstrual status or age (years)</th>
<th>Characteristics: Study group</th>
<th>Characteristics: Patients with ovarian metastasis</th>
<th>Oncological therapy: Study group</th>
<th>Ovarian metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azem et al. (2010)</td>
<td>2</td>
<td>Histology/ Histochemistry Fresh ovarian tissue</td>
<td>Premenopausal</td>
<td>OTC patients</td>
<td>–</td>
<td>No prior CT or RT</td>
<td>0%</td>
</tr>
<tr>
<td>Huser et al. (2007)</td>
<td>1</td>
<td>Histology Fresh ovarian tissue</td>
<td>Premenopausal</td>
<td>OTC patient Tumour stage NR</td>
<td>–</td>
<td>Prior treatment NR</td>
<td>0%</td>
</tr>
<tr>
<td>Xenotransplantation</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Clinical studies</td>
<td>Kim et al. (2008)</td>
<td>156</td>
<td>Histology</td>
<td><45</td>
<td>SCC or Non-SCC; FIGO Stage IA-IIB</td>
<td>NR</td>
<td>RH + PLND + BSO with or without appendectomy</td>
</tr>
<tr>
<td>Kodama et al. (2007)</td>
<td>109</td>
<td>NR Follow-up 1 – 143 months</td>
<td><50</td>
<td>SCC, AC or ADSC; FIGO Stage IB-IIIB</td>
<td>NR</td>
<td>RH + PLND (all patients) EPI, CT, chemoradiation</td>
<td>0–3.7% (max 4/109)*</td>
</tr>
<tr>
<td>Landoni et al. (2007)</td>
<td>807</td>
<td>Histology</td>
<td><45</td>
<td>SCC, AC, or ADSC; FIGO stage IA2, IB or IIA LN+; 20%</td>
<td>Both cases: Age ≥ 4; SCC; Stage IB1; LN-RH + PLND + brachytherapy</td>
<td>SCC (N = 4); AC (N = 10)</td>
<td>Hysterectomy + PLND + BSO or USO</td>
</tr>
<tr>
<td>Morice et al. (2000, 2001)</td>
<td>95</td>
<td>Clinical follow-up (14–15 years)</td>
<td><43</td>
<td>AC (N = 15) or SCC (N = 80) FIGO Stage IB1, IB2 or IIA LN+; 20%</td>
<td>Both cases: Age ≥ 4; SCC; Stage IB1; LN-RH + PLND + brachytherapy</td>
<td>SCC (N = 4); AC (N = 10)</td>
<td>Hysterectomy + PLND + BSO or USO</td>
</tr>
<tr>
<td>Nakanishi et al. (2001)</td>
<td>SCC: 556 AC: 146</td>
<td>Histology</td>
<td>Premenopausal</td>
<td>All SCC and AC patients who underwent BSO or USO and hysterectomy and PLND</td>
<td>Case 1: Age 29, Stage IB AC Case 2: Age 27, Stage IIB, AC</td>
<td>RH + PLND + BSO</td>
<td>0.2% (2/807)</td>
</tr>
<tr>
<td>Natsume et al. (1999)</td>
<td>14</td>
<td>History</td>
<td>≤40</td>
<td>SCC or AC FIGO stage IB, IIA and IIB</td>
<td>Case 1: Age 29, Stage IB AC Case 2: Age 27, Stage IIB, AC</td>
<td>RH + PLND + BSO</td>
<td>14.3% (2/14)</td>
</tr>
<tr>
<td>Pahisa et al. (2008)</td>
<td>28</td>
<td>Clinical follow-up (mean 44.3 ± 23.1 months; N = 4 lost to follow-up)</td>
<td>Premenopausal</td>
<td>AC (N = 6) or SCC (N = 22); FIGO Stage IB1 Patients who underwent oophoropexy</td>
<td>–</td>
<td>RH + PLND + BSO</td>
<td>0% (0/28)</td>
</tr>
<tr>
<td>Parente et al. (1964)</td>
<td>88</td>
<td>Histology</td>
<td>≤50</td>
<td>Stage I epidermoid carcinoma</td>
<td>–</td>
<td>RH + PLND + BSO</td>
<td>0% (0/88)</td>
</tr>
<tr>
<td>Yamanaka et al. (2003)</td>
<td>69</td>
<td>Clinical follow-up (4–137 months)</td>
<td><50</td>
<td>FIGO Stage IB1-II</td>
<td>NR</td>
<td>RH or simple hysterectomy, PLND, post-operative CT or RT</td>
<td>0–1.4% (max 1/69)*</td>
</tr>
<tr>
<td>Autopsy</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

AC, adenocarcinoma; SCC, squamous cell carcinoma; Non-SCC, non-squamous cell carcinoma; ADSC, adenosquamous cell carcinoma; RH, radical hysterectomy; PLND, pelvic lymph node dissection; CT, chemotherapy; RT, radiotherapy; EPI, External pelvic irradiation; VB, vaginal brachytherapy; BSO, bilateral salpingo-oophorectomy; USO, unilateral salpingo-oophorectomy; LN+ or LN−, lymph node positive/negative; NR, not reported.

*An exact percentage of ovarian involvement could not be derived from these studies, as age or menopausal status was not provided for the women who had ovarian metastasis. The minimum and maximum percentages of ovarian involvement that could possibly result from the data given are shown in the table.
Other tumours of the female genital organs

No autotransplantation procedures have been reported in patients with other types of gynaecological malignancies. One study reported on the incidence of ovarian metastases in a group of patients who died after a diagnosis of uterine cancer, without specifying cancer type or stage (Kyono et al., 2010). Included in this study were four patients of 20 years or younger who had had uterine cancer without ovarian involvement. Amongst patients aged 21–30 years, 12.8% had ovarian metastases, while in patients aged 31–40, 13.3% had metastases.

Although the incidence of ovarian involvement in patients with other gynaecological malignancies cannot be obtained from studies with larger populations, case reports have indicated ovarian involvement in various malignancies. Ovarian metastases have been found in women with an epithelioid or placent al site trophoblastic tumour (Xue et al., 2002; Aoki et al., 2005; Milingos et al., 2007; Shet et al., 2008; Lan et al., 2010), leiomyosarcoma (Young and Scully, 1990; Vasiljevic et al., 2008), endometrial stromal sarcoma (Young and Scully, 1990; Khalifa et al., 1996; Yilmaz et al., 2002) and other tumours (Tripathi et al., 2005).

Tumours of the gastrointestinal tract

Gastric cancer

Autotransplantation has not been performed in patients suffering from gastric cancer. Five clinical and autopsy studies were identified that presented data on ovarian involvement in gastric cancer (Table V), all from Asian countries. The incidences reported for ovarian metastases varied considerably. The lowest incidence (7.4%) was reported in a clinical follow-up study amongst 380 patients with gastric cancer (Yook et al., 2007). Two relatively small autopsy studies described metastases in all premenopausal patients studied, although one of these studies focused on gastric cancer patients who already had cervical metastases (Hirono et al., 1983; Imachi et al., 1993).

Colorectal, appendiceal and anal cancer

Two reports were retrieved describing ovarian tissue autotransplantation in a patient with anal cancer. However, no information was provided on the analysis of the ovarian tissue for malignant cells or on the health status of the patient after transplantation (Ditrich et al., 2008, 2009).

Data on histological examination of ovarian tissue from colon cancer patients undergoing ovarian tissue cryopreservation were scarce, while several clinical and autopsy studies indicated ovarian metastases to be present in colon carcinoma patients (Table VI). Unfortunately, the study populations were relatively small for four out of five clinical studies and the populations consisted of patients with varying tumour stages.

A single report on the frequency of ovarian metastases from appendiceal cancer reported an incidence of 28.6% and indicated that patients with advanced cancer stages were most at risk for having ovarian metastases (Ditrich et al., 2007). Additional case reports have described ovarian involvement in various histological types of appendiceal cancer (Lesnick and Miller, 1949; Wilson, 1962; Hesketh, 1963; Forsgren et al., 1974; Qizilbash, 1975; Fichera et al., 1976; Gamble, 1976; Didolkar and Fanous, 1977; Paone et al., 1978; Bullon et al., 1981; Kashani and Levy, 1983; Tan and Lau, 1983; Menino et al., 1985; McBroom et al., 2000; Ayhan et al., 2005; Hristov et al., 2007; Powell et al., 2009; Timofeev et al., 2010).

Lymphomas

The follow-up from lymphoma survivors who received ovarian tissue autotransplantation has not been extensively described when it comes to disease status. Nevertheless, numerous autotransplantation procedures have been performed in lymphoma survivors and no recurrent cancer has been reported following transplantation (Radford et al., 2001; Donnez et al., 2004; Meirou et al., 2005; Schmidt et al., 2005, 2011; Demeestere et al., 2006, 2007, 2010; Donnez et al., 2006, 2008; Okty, 2006; Rosendahl et al., 2006, 2011a; Meirou et al., 2007a, b; Andersen et al., 2008; Meirou, 2008; Dolmans et al., 2009; Oktay and Oktan, 2010; Silber et al., 2010; Akar et al., 2011; Oktay et al., 2011; Stern et al., 2011; Dittrich et al., 2012; Kim, 2012; Muller et al., 2012).

In accordance with these findings, histological assessment and xenotransplantation of ovarian cortex fragments obtained for cryopreservation purposes has failed to reveal any tumour components (Table VII).

In a clinical study focussing on patients with lymphoma in the gynaecological organs, as well as an autopsy study regarding lymphoma patients, ovarian involvement has been described (Table VII). Unfortunately, these studies did not provide insight into the risk of ovarian involvement in different types of lymphoma. Case studies have indicated that ovarian metastases could occur in patients suffering from Hodgkin’s and non-Hodgkin’s lymphoma, Burkitt’s lymphoma, large and small cell lymphoma, mixed lymphocytic histiocytic and lymphphocytic lymphoma, lymphosarcoma and follicular lymphoblastoma (Epperson, 1950; Hahn, 1958; Nelson et al., 1958; Woodruff et al., 1963; Ziegler and Miller, 1966; Finkle and Goldman, 1974; Halpin, 1975; Armon, 1976; Rotmesch and Woodruff, 1982; Gupta et al., 1983; Osborne and Robboy, 1983; Konje et al., 1989; Liang et al., 1990; Monterroso et al., 1993; Skinner et al., 1993; McCarville et al., 2001; Bittinger et al., 2011; Pudasaini et al., 2011).
<table>
<thead>
<tr>
<th>First author, year</th>
<th>Sample size</th>
<th>Assessment</th>
<th>Menstrual status or age (years)</th>
<th>Characteristics: Study group</th>
<th>Characteristics: Patients with ovarian metastasis</th>
<th>Oncological therapy: Study group</th>
<th>Ovarian metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histology or PCR (OTC patients)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azem et al. (2010)</td>
<td>1</td>
<td>Histology/ Histochemistry Fresh ovarian tissue</td>
<td>Premenopausal</td>
<td>OTC patient</td>
<td>–</td>
<td>No CT or RT</td>
<td>0%</td>
</tr>
<tr>
<td>Xenotransplantation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dundar et al. (2002)</td>
<td>24</td>
<td>Histology</td>
<td><50</td>
<td>FIGO stage I–III EC</td>
<td>EC</td>
<td>Hysterectomy, partial omentectomy, LND, RT</td>
<td>41.7% (10/24)</td>
</tr>
<tr>
<td>Evans-Metcalf et al. (1998)</td>
<td>37</td>
<td>Histology</td>
<td>≤45</td>
<td>FIGO stage I–IV</td>
<td>NR</td>
<td>RH, BSO, RT</td>
<td>2.6% (1/39)</td>
</tr>
<tr>
<td>Farhi et al. (1986)</td>
<td>10</td>
<td>Clinical follow-up (3 months – 10 years)</td>
<td><25</td>
<td>Grade I–II AA: n = 6; AC: N = 3; ADSC: N = 1</td>
<td>Grade II ADSQ</td>
<td>Hysterectomy, BSO, RT, progestogens</td>
<td>10% (1/10)</td>
</tr>
<tr>
<td>Gitsch et al. (1995)</td>
<td>17</td>
<td>Clinical follow-up (12 months – 78 years; n = 2 lost to follow-up)</td>
<td>Premenopausal</td>
<td>FIGO stage I–IV AC</td>
<td>FIGO stage IIIa: n = 1; stage IV: n = 2</td>
<td>RH, BSO, LND</td>
<td>17.6% (3/17)</td>
</tr>
<tr>
<td>Hachisuga et al. (2000)</td>
<td>81</td>
<td>Histology</td>
<td><50</td>
<td>Grade I–III EC</td>
<td>EC</td>
<td>Hysterectomy, BSO, RT, CT</td>
<td>7.4% (6/81)</td>
</tr>
<tr>
<td>Hanprasertpong et al. (2008)</td>
<td>51</td>
<td>Histology</td>
<td><45</td>
<td>FIGO stage I–III EC: n = 50; AA: n = 1</td>
<td>NR</td>
<td>Surgery, CT, RT</td>
<td>5.9% (3/51)</td>
</tr>
<tr>
<td>Kaku et al. (1993)</td>
<td>17</td>
<td>Clinical follow-up (4 months – 11 years)</td>
<td>≤40</td>
<td>FIGO stage Ia–IIC EC: n = 14; AA: n = 3; UC: n = 1</td>
<td>Grade I–III</td>
<td>Hysterectomy, BSO, LND, RT, CT</td>
<td>5.9% (1/17)</td>
</tr>
<tr>
<td>Lee et al. (2007)</td>
<td>79</td>
<td>Histology</td>
<td>≤45</td>
<td>FIGO stage I–IV</td>
<td>EC: n = 3; mixed undifferentiated and EC: n = 1</td>
<td>Hysterectomy, LND</td>
<td>5.1% (4/79)</td>
</tr>
<tr>
<td>Niwa et al. (2000)</td>
<td>14</td>
<td>Clinical follow-up (7–144 months)</td>
<td><40</td>
<td>FIGO stage Ia–IVb EC: LN+: n = 5</td>
<td>FIGO stage IIb and IVb LN+ (n = 1)</td>
<td>CT, RT, surgery</td>
<td>14.3% (2/14)</td>
</tr>
<tr>
<td>Pan et al. (2011)</td>
<td>160</td>
<td>Histology</td>
<td>≤45</td>
<td>FIGO stage I</td>
<td>FIGO stage I (n = 3)</td>
<td>Primary total hysterectomy, BSO, LND</td>
<td>1.9% (3/160)</td>
</tr>
<tr>
<td>Quinn et al. (1985)</td>
<td>32</td>
<td>Clinical follow-up (from <5 to >15 years)</td>
<td>Premenopausal</td>
<td>Stage I–IV</td>
<td>NR</td>
<td>Hysterectomy, PLN, BSO, RT</td>
<td>3.1% (1/32)</td>
</tr>
<tr>
<td>Walsh et al. (2005)</td>
<td>102</td>
<td>Histology Clinical follow-up after ovarian preservation</td>
<td>≤45</td>
<td>FIGO stage I–III Grade I–III EC: n = 98 ADSC: n = 4</td>
<td>FIGO stage IIIa: n = 1; IIIa2: n = 2</td>
<td>Hysterectomy, BSO (n = 86), CT, hormonal treatment</td>
<td>2.9% (3/102)</td>
</tr>
</tbody>
</table>

Continued
Table IV Continued

<table>
<thead>
<tr>
<th>First author, year</th>
<th>Sample size</th>
<th>Assessment</th>
<th>Menstrual status or age (years)</th>
<th>Characteristics: Study group</th>
<th>Characteristics: Patients with ovarian metastasis</th>
<th>Oncological therapy: Study group</th>
<th>Ovarian metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamazawa et al. (2000)</td>
<td>(n = 16): 1–50 months</td>
<td>Clinical follow-up (7–126 months)</td>
<td>Premenopausal</td>
<td>FIGO stage I–IIIb</td>
<td>EC</td>
<td>RH, CT, PLND, BSO</td>
<td>5% (1/20)</td>
</tr>
<tr>
<td>Zhou et al. (2005)</td>
<td>11</td>
<td>Histology</td>
<td>≤40</td>
<td>FIGO stage I–IV</td>
<td>FIGO stage I (n = 3)</td>
<td>hysterectomy, BSO, LND, CT, RT, progesterone</td>
<td>27.3% (3/11)</td>
</tr>
<tr>
<td>Autopsy</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

ADSC, adenosquamous cell carcinoma; AA, adenoacanthoma; AC, adenocarcinoma; EC, endometrioid carcinoma; UC, undifferentiated carcinoma; RH, Radical hysterectomy; LND, lymph node dissection; PLND, pelvic lymph node dissection; CT, chemotherapy; RT, radiotherapy; BSO, bilateral salpingo-oophorectomy; LN ±, lymph node positive/negative; NR, not reported; OTC, ovarian tissue cryopreservation.

Leukaemia

Autotransplantation of ovarian tissue has never been reported for patients with leukaemia, presumably due to the alarming results from PCR analysis and xenotransplantation experiments. Indeed, ovarian involvement has been repeatedly indicated in different types of leukaemia by means of xenotransplantation or PCR analysis using a disease-specific molecular marker. In addition, ovarian involvement in leukaemia has been reported in autopsy studies (Table VIII).

Tumours of the urinary tract

Autotransplantation of ovarian tissue has not been performed in patients suffering from urinary tract tumours. Histological analysis of ovarian tissue from two patients with nephroblastoma showed no evidence of ovarian involvement (Poiriot et al., 2007), although case reports did demonstrate ovarian involvement in nephroblastoma (Qunt and Smith, 1999; McCarrville et al., 2001).

Only one clinical study has reported on the incidence of ovarian metastases in a group of premenopausal female patients with a tumour of the urinary tract, namely carcinoma of the bilharzial urinary bladder (Soliman et al., 1976). In this study, no evidence of ovarian metastases was found in 103 patients. Despite these findings, several case reports have indicated ovarian involvement in bladder cancer patients (Rosas-Uribe and Luna, 1969; Bowby and Smith, 1986; Hasegawa et al., 1989; Ishii et al., 2005; Lee et al., 2010a, b).

Renal cell carcinoma also has the potential to metastasize to the ovaries (Liu et al., 1992; Young and Hart, 1992; Spencer et al., 1993; Adachi et al., 1994; Hammock et al., 2003; Insabato et al., 2003; Agnostonou et al., 2009), as has transitional cell carcinoma of the urinary tract (Fossa et al., 1977; Hsiu et al., 1991; Oliva et al., 1995) and other urinary tract tumours (Gadd et al., 1960).

Tumours of the respiratory tract

No studies on ovarian tissue autotransplantation, xenotransplantation or histological analysis of ovarian tissue from lung cancer patients were retrieved. However, one autopsy study revealed a percentage of 20.9–24.8% of ovarian metastases in patients with pulmonary carcinoma, depending on the patients’ age (Kyono et al., 2010). Unfortunately, the former study as well as one case report did not specify the histological types or tumour stages of pulmonary carcinoma (Lee et al., 2009). However, case reports have indicated involvement in patients diagnosed with large and small-cell lung cancer and papillary-acinar adenocarcinoma (Malviya et al., 1982; Young and Scully, 1985; Nelson et al., 1992; Irving and Young, 2005; Sukumvanich et al., 2005). Other reports showed ovarian involvement in pulmonary papillary serous carcinoma (Householder et al., 2002; Chen et al., 2006), adenocarcinoma of the fetal lung type (Huysentruyt et al., 2010) and pulmonary blastoma (Yu et al., 2009).

Melanoma and malignant blue naevus

For melanoma, no studies reporting on autotransplantation of ovarian tissue, or epidemiology of ovarian involvement were retrieved from the literature. However, numerous case reports were identified describing ovarian metastases from melanoma (Silveira et al., 1977; Gonzalez and Hammond, 1983; Martinelli et al., 1984; Fitzgibbons et al., 1987; Blumenfeld et al., 1991; Young and Scully, 1991; Murphy et al., 1994; Remadi et al., 1997; Moselhi et al., 1998; Nakano et al., 1998; Piura et al., 1998; Santeusano et al., 2000; Gupta et al., 2004; Rey-Caballero et al., 2004; Belagyi et al., 2006; Jeremic et al., 2006; Bloch-Marcotte et al., 2008; Bousis et al., 2008; Milicevic et al., 2008; Shuhaila et al., 2008; Abe et al., 2009; Bahat et al., 2009; Fenzl et al., 2011; Sbitti et al., 2011; Habek et al., 2012).

Apart from cases of ovarian metastases from cutaneous melanomas of different body locations, reports on choroidal melanomas metastasizing to the ovaries were published (Santeusano et al., 2000; Rey-Caballero et al., 2004; Bloch-Marcotte et al., 2008). In one study, a patient having ovarian involvement from a malignant blue naevus of the vulva was described (Spatz et al., 1998).

Bone and soft tissue tumours

For patients with bone and soft tissue tumours, autotransplantation has only been described for Ewing sarcoma. No oncological relapse was observed during follow-up after autotransplantation (Andersen et al.,...
RT–PCR analysis of ovarian tissue obtained for autotransplantation pur-
poses from eight Ewing sarcoma patients showed involvement in one
case (Abir et al., 2010). Nevertheless, other studies reporting on histo-
logical analysis of ovarian tissue from Ewing sarcoma patients did not find
any sign of ovarian metastases (Poirot et al., 2007; Azem et al., 2010).

Three case reports were retrieved describing ovarian metastasis from
Ewing sarcoma in one 13-year-old and two 15-year-old girls (Young
and Scully, 1990; Young et al., 1993; Sullivan et al., 2012).

Reports on histological analysis of ovarian tissue aiming to identify the
presence of minimal residual disease have been published for patients
with osteosarcoma as well as rhabdomyosarcoma. Fortunately, no sign
of ovarian involvement was found in any of these diseases (Poiriet al.,
2007; Azem et al., 2010). However, some of the patients were sub-
jected to chemotherapy before harvesting the ovarian tissue. Case
studies have reported ovarian involvement in patients with osteosar-
coma (Eltabbakh et al., 1997) and rhabdomyosarcoma (Howarth et al.,
1980; Young and Scully, 1989; Young et al., 1993; McCarville et al.,
2001). By means of xenotransplantation of ovarian tissue from five
patients with sarcoma, no tumour components could be detected
(Rosendahl et al., 2011a).

For the remaining malignancies of the bone or soft tissue, only case
studies were obtained. Ovarian metastases were described in patients
with (haem)angiosarcoma (Hermann et al., 1984; Young and Scully,
1990), chondrosarcoma (Young and Scully, 1990; Konishi et al., 1994),
desmoplastic small round cell tumour (Young et al., 1992a, b; Zaloudek
et al., 1995; Elhajj et al., 2002; Parker et al., 2002; Fang et al., 2008; Ota
et al., 2010), clear cell sarcoma (Nugent et al., 2009) and other
tumours (Winfield et al., 2007).

Other tumours

The only remaining indication for which ovarian tissue autotrans-
plantation has been performed is neuroectodermic tumour, but the
Disease status after follow-up was not explicitly stated (Donnez et al., 2006; Janse et al., 2011). In another study where ovarian tissue from a patient with a neurectodermal tumour was analysed histologically, no visible tumour components were observed (Poirot et al., 2007). Data on histological analysis were available for patients who had ovarian tissue cryopreservation for medulloblastoma and neuroblastoma and suggested no ovarian involvement (Poirot et al., 2007; Azem et al., 2010). Nevertheless, case reports and autopsy data have indicated that ovarian involvement in neuroblastoma does occur (Himelstein-Braw et al., 1977; Meyer et al., 1979; Sty et al., 1980; Young et al., 1993; Somjee et al., 1999; McCarville et al., 2001; Miyauchi et al., 2004).

Other case reports have described ovarian involvement in pancreatic neuroendocrine tumours (Oberg et al., 2002; Moayedoddin et al., 2006; La Rosa et al., 2011), thyroid carcinoma (Young et al., 1994; Logani et al., 2001; Brogioni et al., 2007; Gosnell et al., 2008), malignant thymoma (Yoshida et al., 1981; Bott-Kothari et al., 2000; Demirkiran et al., 2009), malignant adrenal rest tumour (Akishima-Fukasawa et al., 2011), and goblet cell carcinoid (Pearson and Fitzgerald, 1949; Shuster et al., 1970; Robboy et al., 1974; Subbuswamy et al., 1974; Haqqani and Williams, 1977; Brown et al., 1980; Olsson and Ljungberg, 1980; Hirschfeld et al., 1983; Miller et al., 1988; Chen, 1990; Ikeda et al., 1991; Young et al., 1993; Roberts, 1997; Tjalma et al., 2000; Mandai et al., 2001; Byrn et al., 2006). Retinoblastoma (McCarville et al., 2001; Moshfeghi et al., 2002), mesothelioma (Oberg et al., 2002), tumours of the salivary glands (Variakojis et al., 1970; Longacre et al., 1996; Buyukkurt et al., 2008) and other tumours (Jindal et al., 2011) were also shown to have the capacity to metastasize to the ovaries.

Table VI Epidemiological data from colorectal cancer studies.

<table>
<thead>
<tr>
<th>First author, year</th>
<th>Sample size</th>
<th>Assessment</th>
<th>Menstrual status or age (years)</th>
<th>Characteristics: Study group</th>
<th>Characteristics: Patients with ovarian metastasis</th>
<th>Oncological therapy: Study group</th>
<th>Ovarian metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histology or PCR (OTC patients)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azem et al. (2010)</td>
<td>1</td>
<td>Histology/ Histochemistry Fresh ovarian tissue</td>
<td>Premenopausal</td>
<td>OTC patient with colon cancer</td>
<td>–</td>
<td>No CT or RT</td>
<td>0%</td>
</tr>
<tr>
<td>Xenotransplantation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blamey et al. (1981)</td>
<td>201</td>
<td>Clinical follow-up (5–96 months)</td>
<td>≤49</td>
<td>Patients undergoing resection of a primary AC of the colon or rectum Duke's stage B–D</td>
<td>Duke's stage B and C</td>
<td>Resection</td>
<td>2.5% (5/201)</td>
</tr>
<tr>
<td>Cutait et al. (1983)</td>
<td>14</td>
<td>Clinical follow-up (NR)</td>
<td>Premenopausal</td>
<td>Adenocarcinoma of the colon Duke's stage A–C</td>
<td>Duke's stage C</td>
<td>Resection</td>
<td>7.1% (1/14)</td>
</tr>
<tr>
<td>Domergue et al. (1988)</td>
<td>38</td>
<td>Clinical follow-up (from 3 to >15 years)</td>
<td><40</td>
<td>Patients treated for colorectal (mucinous) AC Duke's stage A–D</td>
<td>NR</td>
<td>Resection, CT, RT</td>
<td>7.9% (3/38)</td>
</tr>
<tr>
<td>MacKeigan and Ferguson, (1979)</td>
<td>18</td>
<td>Histology</td>
<td>Premenopausal</td>
<td>Patients who received prophylactic oophorectomy for colorectal AC</td>
<td>Duke's stage B: n = 1; C: n = 4; D: n = 1</td>
<td>Resection</td>
<td>33.3% (6/18)</td>
</tr>
<tr>
<td>Pitluk and Poticha (1983)</td>
<td>17</td>
<td>Clinical follow-up</td>
<td>≤40</td>
<td>AC of colon or rectum Duke's stage B–D</td>
<td>NR</td>
<td>Resection</td>
<td>23.5% (4/17)</td>
</tr>
<tr>
<td>Kyono et al. (2010)</td>
<td>256</td>
<td>Autopsy</td>
<td><40</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>26.6% (68/256)</td>
</tr>
</tbody>
</table>

Note: OTC, ovarian tissue cryopreservation; CT, chemotherapy; RT, radiotherapy; AC, adenocarcinoma; NR, not reported.
Table VII Epidemiological data from lymphoma studies.

<table>
<thead>
<tr>
<th>First author, year</th>
<th>Sample size</th>
<th>Assessment</th>
<th>Menstrual status or age (years)</th>
<th>Characteristics: Study group</th>
<th>Characteristics: Patients with ovarian metastasis</th>
<th>Oncological therapy: Study group</th>
<th>Ovarian metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huser et al. (2007)</td>
<td>4</td>
<td>Histology</td>
<td>Premenopausal OTC patients</td>
<td>OTC patients</td>
<td>–</td>
<td>Prior treatment NR</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fresh ovarian tissue</td>
<td>Stage 2B: n = 3 Stage 3A: n = 1 Stage 4: n = 3</td>
<td>HL: n = 3 NHL: n = 1</td>
<td>Tumour stage NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim et al. (2001)</td>
<td>18</td>
<td>Histology</td>
<td>Premenopausal OTC patients</td>
<td>OTC patients</td>
<td>–</td>
<td>Prior treatment NR</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fresh ovarian tissue</td>
<td>HL: n = 13 (3 primary disease, 10 recurrence) NHL: n = 5 (2 primary disease; three recurrence)</td>
<td>Tumour stage NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meirow et al. (1998)</td>
<td>7</td>
<td>Histology</td>
<td>Premenopausal OTC patients</td>
<td>OTC patients</td>
<td>–</td>
<td>At least one patient had CT prior to OTC</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fresh ovarian tissue</td>
<td>HL</td>
<td>Stage 2B: n = 3 Stage 3A: n = 1 Stage 4: n = 3</td>
<td>Tumour stage NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meirow et al. (2008)</td>
<td>47</td>
<td>Histology/PCR/immunohistochemical staining to detect Reed-Sternberg cells (HL) or molecular markers (NHL)</td>
<td>Premenopausal OTC patients</td>
<td>OTC patients</td>
<td>–</td>
<td>CT before OTC: HL: n = 16 NHL: n = 9</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fresh ovarian tissue</td>
<td>HL: n = 33 NHL: n = 14</td>
<td>Tumour stage NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Okcay and Oktem (2010)</td>
<td>18 or 19</td>
<td>Histology</td>
<td>Premenopausal OTC patients</td>
<td>OTC patients</td>
<td>–</td>
<td>NR</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fresh ovarian tissue</td>
<td>HL: n = 12 or 13 patients NHL: n = 6</td>
<td>Tumour stage NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porrot et al. (2007)</td>
<td>3</td>
<td>Histology</td>
<td>Prepubertal OTC patients</td>
<td>OTC patients</td>
<td>–</td>
<td>All patient underwent several courses of CT before OTC</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fresh ovarian tissue</td>
<td>HL: n = 1 Lymphoma (NOS): n = 2</td>
<td>Tumour stage NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seshadri et al. (2006)</td>
<td>26</td>
<td>Histology/immunohistochemistry</td>
<td>Premenopausal OTC patients</td>
<td>OTC patients</td>
<td>–</td>
<td>Prior CT: n = 9: ABVD: n = 7 Stanford V: n = 1 ChIVPP: n = 1</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease below diaphragm: n = 9</td>
<td>Stage III or IV: n = 9</td>
<td>Tumour stage NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xenotransplantation</td>
<td></td>
<td>Xenotransplantation into 20 NOD/LtSz-SCID mice. Animal autopsy 16 weeks after transplantation</td>
<td>Premenopausal OTC patients</td>
<td>OTC patients</td>
<td>–</td>
<td>NR</td>
<td>0%</td>
</tr>
<tr>
<td>Kim et al. (2001)</td>
<td>18</td>
<td>Xenotransplantation into 20 NOD/LtSz-SCID mice. Animal autopsy 16 weeks after transplantation</td>
<td>Premenopausal OTC patients</td>
<td>OTC patients</td>
<td>–</td>
<td>NR</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fresh ovarian cortex into immunodeficient nude</td>
<td>HL: n = 13 (3 primary disease, 10 recurrence) NHL: N = 5 (2 primary disease; 3 recurrence)</td>
<td>Tumour stage NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosendahl et al. (2011a)</td>
<td>9</td>
<td>Xenotransplantation of cryopreserved and thawed ovarian cortex into immunodeficient nude</td>
<td>Premenopausal OTC patients with HL and NHL</td>
<td>–</td>
<td>NR</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>First author, year</td>
<td>Sample size</td>
<td>Assessment</td>
<td>Menstrual status or age (years)</td>
<td>Characteristics: Study group</td>
<td>Characteristics: Patients with ovarian metastasis</td>
<td>Oncological therapy: Study group</td>
<td>Ovarian metastasis</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Schmidt (2004)</td>
<td>1</td>
<td>Histological examination of tissue after xenotransplantation into SCID mouse Follow-up: 4 weeks</td>
<td>Premenopausal</td>
<td>OTC patient with B-cell lymphoma stage III of the mediastinum</td>
<td>–</td>
<td>No prior treatment</td>
<td>0%</td>
</tr>
<tr>
<td>Clinical studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harris and Scully (1984)</td>
<td>19</td>
<td>Histological examination of resection specimens or biopsies</td>
<td>≤50</td>
<td>Patients with lymphoma of the uterine endometrium (n = 1), cervix (n = 16) or vagina (n = 2), retrospectively collected from consultation files. FIGO stages cervical lymphoma: Stage 1: n = 9; stage 2: n = 6; Stage 3: n = 2 FIGO stages vaginal lymphoma: Stage I: n = 1; Stage IV: n = 1 FIGO stage endometrial lymphoma: Stage III</td>
<td>Case 1: 48-year-old woman with FIGO stage I cervical lymphoma</td>
<td>NR</td>
<td>10.5% (2/19)</td>
</tr>
<tr>
<td>Autopsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kyono et al. (2010)</td>
<td>736</td>
<td>Autopsy</td>
<td><40</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>13.3% (98/736) 10.5% (8/76) Age 0–10: 10.7% (15/140) Age 11–20: 13.9% (27/194) Age 21–30: 14.7% (48/326) Age 31–40</td>
</tr>
</tbody>
</table>

OTC, ovarian tissue cryopreservation; HL, Hodgkin’s lymphoma; NHL, non-Hodgkin’s lymphoma; CT, chemotherapy; NOS, not otherwise specified; NR, not reported.
<table>
<thead>
<tr>
<th>First author, year</th>
<th>Sample size</th>
<th>Assessment</th>
<th>Menstrual status or age (years)</th>
<th>Characteristics: Study group</th>
<th>Characteristics: Patients with ovarian metastasis</th>
<th>Oncological therapy: Study group</th>
<th>Ovarian metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courbiere et al. (2010)</td>
<td>1</td>
<td>Histology and RQ-PCR</td>
<td>Premenopausal OTC patient with chronic phase CML</td>
<td>Chronic phase CML</td>
<td>Imatinib</td>
<td>100% (1/1)</td>
<td></td>
</tr>
<tr>
<td>Dolmans et al. (2010)</td>
<td>18</td>
<td>Histology and RT–PCR (n = 16)</td>
<td>OTC patients with: CML: n = 6 ALL: n = 12</td>
<td>CML patients: aged 31 and 30 at OTC. No prior CT. ALL patients: 11–20 years old at OTC. Prior CT: n = 3</td>
<td>Eight patients received chemotherapy before OTC</td>
<td>50% (9/18) CML: 33.3% (2/6) ALL: 58.3% (7/12)</td>
<td></td>
</tr>
<tr>
<td>Greve et al. (2012)</td>
<td>25</td>
<td>Histology and PCR (n = 7)</td>
<td>OTC patients with: ALL: n = 11 CML: n = 3 JMML: n = 1</td>
<td>Four patients with positive PCR but negative histology: CML, chronic phase: n = 2 ALL, complete remission: n = 1 AML, complete remission: n = 1</td>
<td>18 patients received chemotherapy before OTC</td>
<td>16% (4/25)</td>
<td></td>
</tr>
<tr>
<td>Meirow et al. (2008)</td>
<td>9</td>
<td>Histology</td>
<td>Fresh ovarian tissue: n = 9 PCR and histology on cryopreserved-thawed tissue: n = 2</td>
<td>20-year-old CML patient with positive RT–PCR signal in thawed tissue</td>
<td>–</td>
<td>All CML and AML patients had CT prior to OTC The MDS patient did not have prior CT</td>
<td>11.1% (1/9) CML: 33% (1/3)</td>
</tr>
<tr>
<td>Poirot et al. (2007)</td>
<td>6</td>
<td>Histology</td>
<td>Fresh ovarian tissue</td>
<td>OTC patients with leukaemia (NOS)</td>
<td>–</td>
<td>All underwent several courses of CT before OTC</td>
<td>0%</td>
</tr>
<tr>
<td>Rosendahl et al. (2010)</td>
<td>26</td>
<td>Histology/immunohistochemistry and PCR (n = 8)</td>
<td>Prepubertal OTC patients with: ALL: n = 13 (PCR possible: n = 2) AML: n = 7 (PCR possible: n = 1) CML: n = 5 (PCR possible: n = 5) JMML: n = 1</td>
<td>Six patients with positive PCR results but negative histology: CML in complete remission: n = 1 (Age: 13 years) CML chronic phase: n = 4 (Age: 7, 17, 24, 26 years) ALL in complete remission: n = 2 (Age: 4, 9 years) AML in complete remission: n = 1 (Age: 21 years)</td>
<td>NR</td>
<td>23.1% (6/26) CML: 100% (5/5) ALL: 15.4% (2/13) AML: 14.3% (1/7)</td>
<td></td>
</tr>
<tr>
<td>Dolmans et al. (2010)</td>
<td>18</td>
<td>Xenotransplantation to immunodeficient mice</td>
<td>Premenopausal OTC patients with: CML: n = 6 ALL: n = 12</td>
<td>ALL patients aged 11–21 at OTC. Prior CT: n = 2; PCR (possible in four patients): all positive</td>
<td>Eight patients received chemotherapy before OTC</td>
<td>27.8% (5/18) CML: 0% (0/6) AML: 41.7% (5/12)</td>
<td></td>
</tr>
<tr>
<td>Greve et al. (2012)</td>
<td>25</td>
<td>Histology and PCR (n = 7) of ovarian cortex after 20 weeks of xenotransplantation in immunodeficient mice</td>
<td>Premenopausal OTC patients with: ALL: n = 11 AML: n = 10</td>
<td>–</td>
<td>18 patients received chemotherapy before OTC</td>
<td>0% (0/25)</td>
<td></td>
</tr>
</tbody>
</table>

Table VIII Epidemiological data from leukaemia studies.
<table>
<thead>
<tr>
<th>First author, year</th>
<th>Sample size</th>
<th>Assessment</th>
<th>Menstrual status or age (years)</th>
<th>Characteristics: Study group</th>
<th>Characteristics: Patients with ovarian metastasis</th>
<th>Oncological therapy: Study group</th>
<th>Ovarian metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosendahl et al. (2011a)</td>
<td>7</td>
<td>Xenotransplantation of cryopreserved and thawed ovarian cortex into immunodeficient nude mice. Histology 4 weeks after xenotransplantation</td>
<td>Premenopausal</td>
<td>CML: n = 3</td>
<td>OTC patients with ALL AML or CML</td>
<td>NR</td>
<td>0%</td>
</tr>
<tr>
<td>Clinical studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turial et al. (2009)</td>
<td>>300</td>
<td>Clinical follow-up (retrospective design)</td>
<td>Prepubertal and premenopausal</td>
<td>Girls treated for ALL</td>
<td>Case 1: Diagnosis pre-B-ALL at age of 3 years. Treatment: CoALL 82-protocol. Bone marrow relapse at 7 and 9 years of age, treated with CT. Age 11: ovarian metastases. Case 2: Diagnosis pre-B-ALL at age of 14 years. Treatment: CoALL 06-97 protocol. After 18 months of remission: ovarian metastases</td>
<td>NR</td>
<td><0.7% (2/ >300)</td>
</tr>
<tr>
<td>Autopsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reid and Marsden (1980)</td>
<td>27</td>
<td>Autopsy</td>
<td><9</td>
<td>Girls with leukaemia:</td>
<td>ALL: n = 12</td>
<td>ALL: n = 6</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AML: n = 9</td>
<td>AML: n = 6</td>
<td>AMML: n = 3</td>
<td>Lym → L: n = 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AMML: n = 3</td>
<td>Lymphoma: n = 3</td>
<td>RI (171/2027)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lym → L: n = 3</td>
<td>Lymphoma: n = 3</td>
<td>RI (171/2027)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Age 0–10: 10.2% (52/511)</td>
<td>Age 11–20: 7.8% (34/438)</td>
<td>Age 21–30: 5.3% (34/686)</td>
<td>Age 31–40: 5.3% (34/686)</td>
</tr>
</tbody>
</table>

OTC, ovarian tissue cryopreservation; NR, not reported; CML, chronic myeloid leukaemia; AML, acute myeloid leukaemia; ALL, acute lymphoblastic leukaemia; JMML, juvenile myelomonocytic leukaemia; AMML, acute myelomonocytic leukaemia; LYM → L, leukaemic conversion of lymphoma; NOS, not otherwise specified.
Discussion

Principal findings and implications for clinical practice

This review aimed to gain insight into the risk of recurrent oncological disease, which is added to a cancer survivor’s natural risk of cancer recurrence, when ovarian tissue autotransplantation is performed.

Great concern

For some oncological diseases, a relatively high risk of reintroduction of malignant disease by means of autotransplantation could be derived from the literature available. In leukaemia, a clear risk of ovarian involvement and disease recurrence after transplantation has been shown by different methods. Therefore, autotransplantation of ovarian tissue should be considered unsafe in survivors of this blood borne malignancy.

Serious reasons for concern

For other tumour types, the drawing of conclusions based on the available literature proved to be more difficult. Almost exclusively based on clinical and autopsy studies describing populations containing patients with different disease stages, we can conclude that it is justified to have serious concerns about oncological recurrence after ovarian tissue autotransplantation in survivors of gastric or colorectal cancer.

Most clinical studies on the prevalence of ovarian metastases in endometrial cancer were based on populations with different tumour stages and suffered from small sample sizes. Despite this, it is clear that ovarian metastases occur in different endometrial cancer stages, including FIGO I. As two studies concerning these low-stage patients reported contradictory results (Zhou, 2005; Pan, 2011) clinical decision-making will remain difficult in survivors from endometrial cancer.

Less concern

When it comes to cervical cancer, clinical studies suggest that ovarian involvement is not very common in, especially low-stage, cervical carcinoma patients. Nevertheless, data from histological examination of ovarian tissue are scarce. Although clinical data are reassuring when it comes to autotransplantation safety in patients with low-stage disease, the impact of different histological types of cervical cancer should be further evaluated.

Negative results from histological examination and xenotransplantation of ovarian tissue from breast cancer patients suggest a relatively low risk of disease recurrence in breast cancer survivors who have their ovarian tissue autotransplanted. However, information regarding the influence of different histological types (lobular versus ductal carcinoma) on the risk of ovarian involvement remains scarce. Another factor that might influence the risk of oncological relapse in breast cancer survivors is the restoration of a premenopausal hormonal status after autotransplantation. Although the exact impact of hormonal changes is unknown, they might theoretically play a role in patients with hormone-dependent breast tumours (Yaghiyan and Colditz, 2011).

Least concern

Results from histological examination and xenotransplantation of ovarian tissue from patients in a fertility preservation programme suggest a low risk of disease recurrence following autotransplantation in lymphoma survivors. Moreover, follow-up data from ovarian tissue autotransplantation procedures are reassuring. Although safety can never be guaranteed, ovarian tissue autotransplantation can certainly be considered in lymphoma survivors.

Appropriateness of included studies

Follow-up after ovarian tissue autotransplantation

Reports on autotransplantation procedures are, at least theoretically, the ‘Golden standard’ when trying to estimate the risk of reintroducing malignancy. In clinical practice, however, we observed that oncological follow-up of cancer survivors is still short and not always described comprehensively. Some patients who had their ovarian tissue transplanted had already received chemotherapy before ovarian tissue harvesting, whilst others had not (Donnez et al., 2006). As chemotherapy might influence the presence of viable cancer cells in the ovarian graft, this factor should be kept in mind when interpreting results.

Although difficulties in determining whether an oncological relapse is due to a reintroduction of tumour cells via the transplant will probably always remain, clinical data may give an indication. For instance, a solid tumour near the transplant is more likely to raise suspicion than a tumour at a distant location. Nevertheless, even with signs of oncological relapse in the area of the transplant, it will be difficult to establish whether or not this is a result of reintroduction of tumour cells via the graft.

Histology, PCR and xenotransplantation

For most types of cancer there is no substitute for microscopic examination of the ovarian cortex (Oktay and Buyuk, 2004). When a cancer cell is found, it is difficult to determine whether this cell is viable and has the capacity to recolonize the patient and cause oncological relapse (Rosedahl et al., 2010). PCR is a highly sensitive technique to detect DNA or RNA from metastatic cells. Unfortunately, only a limited number of tumour types have chromosomal aberrations that provide tumour-specific PCR targets (Jadoul et al., 2010). Another limitation of PCR for the analysis of minimal residual disease is that the detection of tumour-specific DNA or RNA does not necessarily mean that viable cancer cells are present in the ovarian cortex.

Different PCR results may be obtained from different parts of the same tissue fragment (Rosedahl et al., 2010). As the tissue fragment that is being analysed for residual malignant cells can no longer be autotransplanted, this examination does not guarantee safety regarding tumour reintroduction. This so-called ‘sample bias’ also applies to analysis by histology or xenotransplantation. Xenotransplantation provides a better insight in the viability of the cancer cells present in the graft. However, it is unknown to what extent xenotransplantation results are applicable to the human situation since the recipient animals have a compromised immune system and different strains may lead to different results (Meyer and Debatin, 2011). Finally, as the minimal follow-up period of recipient animals needed for detection of tumour cells in the ovarian tissue has never been specified, some xenotransplantation studies may have missed ovarian involvement due to short follow-up.

Clinical studies and autopsy data

Clinical and autopsy studies provided the largest groups of patients from which an incidence of ovarian involvement in various type of malignancies could be determined. Notwithstanding this important strength, results should be interpreted with caution as they highly depend on the
selection criteria of the particular study as well as on the study group characteristics.

It is almost certain that not all factors influencing ovarian metastasis in patients with a certain type of malignancy are known. For instance, in a multivariate analysis, histological tumour type and blood vessel invasion proved to be independent predictors of ovarian involvement in cervical carcinoma (Yamamoto et al., 2001). For some tumour types, such as gastric cancer, most data originated from a single continent. The impact on ovarian involvement in a certain type of malignancy by ethnic, environmental or cultural factors is, however, largely unknown.

Follow-up of a group of patients with a certain malignancy may lead to the diagnosis of ovarian metastases long after the detection of the primary tumour. It is difficult to determine whether the development of ovarian metastases during follow-up indicates that cancer cells would already have been present at the time of ovarian tissue cryopreservation shortly after diagnosis of the malignancy. This remark holds true for both autopsy and clinical studies.

Implications for future research
An important topic for further research is the development of alternative procedures to avoid transmission of cancer cells via autotransplantation, such as in vitro maturation of primordial follicles.

As these alternative procedures have not yet been introduced in clinical practice, future research should also focus on the safety aspects of ovarian tissue autotransplantation. Studies aimed at the detection of cancer cells in the ovarian tissue from patients in a fertility preservation programme should be performed, especially for those cancer types for which data are still scarce.

When it comes to clinical studies, many reports provided only very limited information on patient and disease characteristics of their study population. A more comprehensive registration of these data in future studies would provide better possibilities to compare the characteristics of patients from a particular clinical study with a patient seen in clinical practice.

Implications for fertility preservation choices
Several decades may lie between ovarian tissue harvesting and the actual autotransplantation of the ovarian tissue. During this period, new techniques aimed at avoiding the reseeding of the cancer through the transplant may become available. In vitro maturation of primordial follicles, xenografting of ovarian tissue, purging malignant cells from ovarian tissue and transplantation of isolated follicles have all been proposed as future applications that could be combined with cryopreservation of ovarian tissue (Schröder et al., 2004; Dolmans et al., 2008; Sonmez and Oktay, 2010; Grynberg et al., 2012). Although these techniques have not yet resulted in pregnancies in humans, the approaches may provide salient options to girls and adolescents later in life (Nisker et al., 2006; Jeruss and Woodruff, 2009). For these reasons, one should not refrain from ovarian tissue cryopreservation because of uncertainties regarding autotransplantation safety when it comes to young patients. Obviously, in these instances the patient should be counselled extensively about the possibility that also in the future her cryopreserved tissue may not be safe for autotransplantation.

Registration of autotransplantation procedures
The most reliable data regarding autotransplantation safety will be obtained from the follow-up of cancer survivors after ovarian tissue autotransplantation. This implies that data on the follow-up of all autotransplantations performed globally should be available to all experts in the field. In the current situation, data on adverse outcomes of ovarian tissue autotransplantation might be unavailable to other clinicians due to publication bias. In addition, published information reaches other specialists in the field only after a certain delay. These factors could be overcome by an international database, in which information on all procedures, as well as follow-up, would be registered and kept up-to-date.

Conclusion
Based on current literature, it is advisable to refrain from ovarian tissue autotransplantation in survivors of leukaemia. The safety of autotransplantation should be comprehensively discussed with survivors of all other malignant diseases. The most reassuring data regarding autotransplantation safety were found for lymphoma patients.

Acknowledgements
We would like to thank A.H.J. Tillema, information specialist from the Radboud University Nijmegen University Library, for her efforts in optimizing our electronic search strategy.

Authors’ roles
R.P., J.R.W. and L.B. initiated this review. L.B. performed a literature search on the subject. L.B. and R.P. independently performed the study selection and data extraction. Inclusion or exclusion was discussed with C.C.M.B. in case of disagreement. Data analysis and interpretation of results were discussed with C.C.M.B., S.E.J.K., L.F.A.G.M., F.E.L. and D.D.M.B. The manuscript was drafted by L.B. and critically revised by all co-authors. All authors gave final approval of the manuscript.

Funding
The work of R.P. was partially financed by KiKa Foundation.

References

