Technical and performance characteristics of anti-Müllerian hormone and antral follicle count as biomarkers of ovarian response

Stamatina Iliodromiti1, Richard A. Anderson2, and Scott M. Nelson1,*

1School of Medicine, University of Glasgow, Glasgow G31 2ER, UK 2MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK

*Correspondence address. School of Medicine, University of Glasgow, Room 2.52 Level 2, New Lister Building, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. Tel: +44-141-201-8581; E-mail: scott.nelson@glasgow.ac.uk

Submitted on July 15, 2014; resubmitted on October 24, 2014; accepted on November 7, 2014

TABLE OF CONTENTS

- Background
 The physiology of follicle growth determining availability for exogenous gonadotrophin recruitment
- Methods
- Anti-Müllerian hormone
 Factors that can influence AMH values
- Antral follicle count
 Factors that can influence AFC
- Comparison of AMH and AFC performance in predicting ovarian response
- Conclusion

BACKGROUND: Stratified (individualized) medicine has been recognized as a key priority for policy makers and healthcare providers. The main principle of individualized care depends on utilizing patients’ characteristics and biomarkers to predict prognosis, tailor intended treatment and predict treatment outcomes. In reproductive medicine a wide variety of biomarkers have been proposed as predictors of ovarian response; of these, anti-Müllerian hormone (AMH) and antral follicle count (AFC) are purported as exhibiting the most favourable analytical and performance characteristics. Previously AFC and AMH have been considered essentially interchangeable; however, recent trial data have questioned this postulation. The aim of this review is to present an analysis of the strengths and weaknesses of these biomarkers as predictors of ovarian response, using both physiological and technical perspectives.

METHODS: We have conducted a systematic search of the most recent (to May 2014) relevant literature and summarized the existing evidence. Articles written in a language other than English without an available English translation were excluded.

RESULTS: Both AMH values and AFC can be influenced by comparable technical, physiological and exogenous factors. AMH displays some variation within and between cycles, consistent with its physiological role in follicle development, and there are growing data on the impact of pharmacological treatments and pathological conditions but cycle-independent measurement is appropriate for clinical purposes. A range of issues with manual AMH assays may be resolving with the development of fully automated assays. Despite described standardization of its measurement technique, AFC is subject to marked inter- and intra-operator variability and the effects of external influences are likely to be comparable. Outwith some highly specialist centres, the intracyclic variation in AFC requires its measurement between Day 2 and 4 of the cycle. Observational studies suggest comparable performance characteristics for AMH and AFC in predicting poor and high ovarian response, but recent RCTs suggest markedly better performance for AMH.

CONCLUSIONS: The performance characteristics of both AMH and AFC for the prediction of ovarian response to exogenous gonadotrophins have been inflated by single site observational cohorts, resulting in the viewpoint that AMH and AFC exhibit equivalent performance...
Background

Stratified medicine is recognized as a key global priority for healthcare providers, patients, and pharmaceutical and diagnostic industries. Achieving personalized care with provision of the ‘right treatment, for the right person, at the right time’ should be an inevitable progression as we gain greater understanding of the aetiology and pathophysiology of disease but requires critical assessment of all aspects of care. Advances in understanding have enabled us to predict disease reliably at population levels, with existing and novel biomarkers now being evaluated for incorporation into composite models (Tunstall-Pedoe, 2011). Reproductive medicine has taken a notable lead in the use of prognostic models for stratification of individuals to different likelihood of success, in the utilization of novel biomarkers for predicting ovarian response and assigning risk, and for developing novel therapeutic algorithms to allow streamlining of individuals to the appropriate intervention.

Although a wide variety of biomarkers have been proposed as predictors of ovarian response, it is now clear that anti-Müllerian hormone (AMH) and antral follicle count (AFC) demonstrate the most favourable analytical and performance characteristics (Broekmans, 2006; Broer, 2009, 2011). Several large recent systematic reviews of cohort studies and individual patient data (IPD) meta-analyses have demonstrated consistent positive association of these markers with oocyte yield, poor and excess response, and live birth in IVF cycles (Broer et al, 2011, 2013a, b; Iliodromiti et al, 2014; La Marca and Sunkara 2014). As these two markers both physiologically reflect the number of small antral follicles and are thus strongly correlated (Dewailly et al, 2014a), they have sometimes been considered interchangeable (Fanchin et al., 2003; Nardo et al., 2007; Yang et al., 2011; Leonhardt et al., 2014a, b). However, recent trial data where both were determined have questioned this postulation (Andersen et al., 2011; Arce et al., 2013b). The aim of this review is to summarize the factors that can influence both AMH and AFC, to present a comprehensive update of the strengths and weaknesses of these two biomarkers including the development and analytical characteristics of the new AMH immunoassays, and to evaluate the data underlying their performance characteristics as biomarkers of ovarian response particularly drawing on recent RCTs.

The physiology of follicle growth determining availability for exogenous gonadotrophin recruitment

The molecular mechanisms regulating the recruitment of non-growing follicles and selection for continued growth versus atresia continue to be elucidated. Several key concepts are relevant to the present analysis (Nelson et al., 2013). Firstly, recruitment of primordial follicles occurs across the reproductive lifespan (Peters et al., 1978), this dynamic process with differential rates of follicular activation at different ages is necessary to have a continuous supply of growing follicles to support the selection processes that precede ovulation (Wallace and Kelsey, 2010) and is probably influenced by health status. Secondly follicles undergo atresia at all stages of development (Zuccotti et al., 2011). Thirdly the number of activated follicles reflects the total pool of primordial follicles in a variable manner, with markedly different correlation coefficients in childhood and adult life (Kelsey et al., 2012). Lastly ovarian reserve depletion will depend on the initial quantity of primordial follicles, and the rate of primordial follicle recruitment. Collectively this means that although in adult life, biomarkers of activated follicles such as AMH and AFC can potentially reflect the primordial follicle pool (Hansen et al., 2011), their greatest strength and value will be in indicating the number of follicles that are at late stages of follicular development and capable of responding to exogenous gonadotrophins. Thus AMH and AFC are of greatest value in reflecting what has been termed the functional rather than the true ovarian reserve (Anderson et al., 2012).

Methods

Multiple strategies were used to identify relevant demographic, epidemiological, clinical and biological studies relevant to the broad topic of AFC and AMH, without a date limit and up to May 2014. We searched in sociological online libraries (IBSS, SociINDEX), MEDLINE, EMBASE, EMBASE CLASSIC, Clinicaltrials.gov, ISRCTN registry, EU Clinical Trials Register, UMIN-CTR, ANZCTR, PubMed and Google Scholar using the following key words and hierarchical MeSH terms; anti-müllerian hormone, AMH, müllerian inhibiting factor, MIF, antral follicle count, AFC. Additional journal articles were identified from the bibliography of studies included as well as textbooks and hand searches of other source materials including conference proceedings. Articles written in a language other than English without an available English translation were excluded from our review. From this, we identified and focused on key topics (listed in Table of Contents) where it was judged that there had been clinically relevant advances in the understanding of ovarian response prediction with implications for improved diagnostics and prediction models.

Anti-müllerian hormone

Factors that can influence AMH values

Assay technical issues

Since the original reports of measurement of serum AMH in 1990 (Baker et al., 1990; Hudson et al., 1990; Josso et al., 1990), there has been continual development of the immunoassay by a variety of companies, utilizing different antibody pairs. At present four manual enzyme-linked immunosorbent assays are available and the performance characteristics of these assays are summarized in Table I. Although these assays exhibit good within laboratory reproducibility, they display substantial variability between laboratories, due to the lack of automation and site-specific
processes (Zuvela et al., 2013). These manual assays have now been complemented by two fully automated assays (Dennis et al., 2014; Gassner and Jung, 2014), with initial performance characteristics suggesting significantly more robust assays and lower inter-laboratory variation (Table I) although there are no independent studies using either assay as present.

Additionally, confidence in the measurement of AMH has been shaken due to the recent field safety notices for the Beckman Coulter Gen II assay and the issue of complement interference (MHRA, 2013). Notably these issues were not observed in the original DSL assay nor the pre-release versions of the Gen II assay, both of which utilized the same antibodies (Wallace et al., 2011; Nelson et al., 2011a, b), suggesting that changing manufacturing processes may have been responsible. Other AMH assays are not affected by this issue (Su et al., 2014). A modified protocol has recently been externally validated as overcoming the interference observed in fresh samples (Han et al., 2014) although this is inconvenient to users. In contrast, as complement degrades with storage, interference in stored samples has been shown to be negligible (Welsh et al., 2014). Fortunately this interference issue is assay plate specific, as although the same antibodies are incorporated in the automated Elecsys® assay developed by Roche Diagnostics and the Access assay developed by Beckman Coulter, both the capture and signal generating antibody are in solution and do not bind complement (Dennis et al., 2014; Gassner and Jung 2014).

Potentially the most frustrating issue with measurement of AMH is the lack of an international standard developed in accordance with the International Federation of Clinical Chemistry. Given the increasing availability of a number of AMH assays and their widespread adoption into clinical practice there is an urgent need for an international human standard preparation to allow external calibration of AMH assays and standardize reporting and clinical interpretation. Figure 1 shows the Passing-Bablok regression analyses between AMH concentrations measured with the use of manual assays (Beckman AMH Gen II ELISA and Ansh Labs ultra-sensitive AMH/MIS ELISA) versus automated assay (Elecsys® AMH). At present the differences in calibration mean that AMH values by Gen II assay are ~20% higher and by Ansh assay ~30% higher than the new automated Elecsys® assay (Gassner and Jung 2014). This means that clinicians need to interpret the AMH result in an assay-specific manner, with adjustment for assay manufacturer not recommended for clinical practice. Furthermore the lack of an international standard impairs external assessment of commercial assay performance over time and between manufacturing lots.

Inter-individual variation

Concomitant with the decline in the rate of follicular recruitment observed with age in adult women, circulating AMH concentrations progressively decline with advancing age, reaching undetectable levels ~5 years prior to the cessation of menses (Sowers et al., 2008; Freeman et al., 2012). Several groups have modelled the age-related decline of AMH in large population cohorts, but all exhibit wide confidence intervals (CI) suggesting that for a given age AMH levels in both normal and infertility populations can vary substantially (Almog et al., 2011b; Kelsey et al., 2011; Nelson et al., 2011a, b, 2014; Bentzen et al., 2013). This is not surprising as primordial follicle counts and follicular activity similarly vary substantially between individuals with a one hundred fold difference in primordial follicle numbers observed in healthy women of the same age (Wallace and Kelsey 2010).

Ethnicity has been associated with altered age-specific levels of AMH, with women of Chinese, Black African, Hispanic and South Asian descent reported as having a lower AMH at a given age compared with Caucasian women (Bleil et al., 2014; Iglesias et al., 2014). Whether this ethnic disparity reflects accelerated ovarian ageing, inherent differences in follicular endowment or recruitment and/or differences in AMH secretion per follicle is unclear. Clarification may be achieved by analyses of histological

Table I Anti-Müllerian hormone (AMH) assays characteristics.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Imprecision</td>
<td><8%</td>
<td><14%</td>
<td><6%</td>
<td><6%</td>
<td>1.8–2.0%</td>
<td>2.87–4.34%</td>
</tr>
<tr>
<td>Sample type</td>
<td>Serum, plasma</td>
<td>Serum, plasma</td>
<td>Serum, plasma</td>
<td>Serum, plasma</td>
<td>Serum, Li-heparin plasma</td>
<td>Serum, Li-heparin plasma</td>
</tr>
<tr>
<td>Minimum sample volume</td>
<td>20 µl</td>
<td>25 µl</td>
<td>50 µl</td>
<td>100 µl</td>
<td>50 µl</td>
<td>20 µl</td>
</tr>
<tr>
<td>Incubation time</td>
<td>< 3 h</td>
<td>3 h</td>
<td>2.5 h</td>
<td>4.5 h</td>
<td>18 min</td>
<td>39 min</td>
</tr>
<tr>
<td>Limit of detection (LoD)</td>
<td>0.08 ng/ml</td>
<td>0.14 ng/ml</td>
<td>0.023 ng/ml</td>
<td>0.0012 ng/ml</td>
<td>0.01 ng/ml</td>
<td>≤ 0.02 ng/ml</td>
</tr>
<tr>
<td>Limit of Quantification (LoQ)</td>
<td>0.16 ng/ml</td>
<td>0.35 ng/ml (Decanter et al., 2014)</td>
<td>0.06 ng/ml</td>
<td>0.0039 ng/ml</td>
<td>0.03 ng/ml</td>
<td>≤ 0.08 ng/ml</td>
</tr>
<tr>
<td>Measurement range</td>
<td>0.16–22.5 ng/ml</td>
<td>0.42–21.0 ng/ml</td>
<td>0.06–11.6 ng/ml</td>
<td>0.003–0.75 ng/ml</td>
<td>0.01–23.0 ng/ml</td>
<td>0.02–24.0 ng/ml</td>
</tr>
</tbody>
</table>
been suggested for the diagnosis of the syndrome (Dewaily et al., 2011; Iliodromiti et al., 2013; Lauritsen et al., 2014). For other medical disorders the data are more limited. Adolescent girls with type 1 diabetes have higher AMH levels than controls (Codner et al., 2011), but in adult life they are lower suggesting altered follicular dynamics—certainly women with type 1 diabetes go through the menopause earlier than healthy controls (Soto et al., 2009). In contrast in a study of 72 women with recent-onset rheumatoid arthritis no alteration of AMH was observed (Brouwer et al., 2013). More recently, it has been suggested that AMH production and/or follicular dynamics are altered acutely in response to being unwell. Young girls diagnosed with haematological or other childhood cancers exhibited decreased concentrations of AMH compared with their healthy peers at the time of initial diagnosis (van Dorp et al., 2014). In this cohort of 208 girls with newly diagnosed cancer AMH was also negatively associated with markers of general health including body temperature, C-reactive protein and anemia. Similarly, lower AMH levels have been reported in adults with breast cancer, lymphoma and acute onset Crohn’s disease than in healthy (though infertile) controls (Lawrenz et al., 2012; Şenateş et al., 2013; Su et al., 2013a). These data thus indicate the importance of general health in ovarian function, and consequently in interpreting tests of ovarian follicular activity.

In contrast to initial conclusions from cross-sectional studies it is now clear from prospective longitudinal studies that the endocrine environment which influences follicular activation and development also impacts on AMH concentrations. Pregnancy, GnRH analogues and combined hormonal contraceptives (irrespective of whether they are oral, transdermal or vaginal) are now all known to reduce AMH concentrations (Anderson et al., 2006; Nelson et al., 2010; Hagen et al., 2012; Kallio et al., 2013; Su et al., 2013b). This is likely to reflect suppression of endogenous gonadotrophin secretion and altered antral follicular development. Women would still be expected to respond to exogenous gonadotrophins as predicted by their AMH value; although there are limited data regarding this, it is consistent with the finding that fewer oocytes are obtained from women with a range of malignancies undergoing IVF prior to specific treatment (Friedler et al., 2012).

Although all the above factors may contribute to large age-specific variation in AMH, they do not seem to interfere substantially with the consistent robust associations between oocyte yield (La Marca and Sunkara 2014). This reflects that while AMH is expressed by granulosa cells from the initiation of follicle growth, expression is near-absent in the final pre-ovulatory stages of development. In normal women it has been estimated that 60% of serum AMH is derived from follicles 5–8 mm in diameter (Jeppesen et al., 2013). More recently, it has been suggested that AMH production and/or follicular dynamics are altered acutely in response to being unwell. Young girls diagnosed with haematological or other childhood cancers exhibited decreased concentrations of AMH compared with their healthy peers at the time of initial diagnosis (van Dorp et al., 2014). In this cohort of 208 girls with newly diagnosed cancer AMH was also negatively associated with markers of general health including body temperature, C-reactive protein and anemia. Similarly, lower AMH levels have been reported in adults with breast cancer, lymphoma and acute onset Crohn’s disease than in healthy (though infertile) controls (Lawrenz et al., 2012; Şenateş et al., 2013; Su et al., 2013a). These data thus indicate the importance of general health in ovarian function, and consequently in interpreting tests of ovarian follicular activity.

In contrast to initial conclusions from cross-sectional studies it is now clear from prospective longitudinal studies that the endocrine environment which influences follicular activation and development also impacts on AMH concentrations. Pregnancy, GnRH analogues and combined hormonal contraceptives (irrespective of whether they are oral, transdermal or vaginal) are now all known to reduce AMH concentrations (Anderson et al., 2006; Nelson et al., 2010; Hagen et al., 2012; Kallio et al., 2013; Su et al., 2013b). This is likely to reflect suppression of endogenous gonadotrophin secretion and altered antral follicular development. Women would still be expected to respond to exogenous gonadotrophins as predicted by their AMH value; although there are limited data regarding this, it is consistent with the finding that fewer oocytes are obtained from women with a range of malignancies undergoing IVF prior to specific treatment (Friedler et al., 2012).

Although all the above factors may contribute to large age-specific variation in AMH, they do not seem to interfere substantially with the consistent robust associations between oocyte yield (La Marca and Sunkara 2014). This reflects that while AMH is expressed by granulosa cells from the initiation of follicle growth, expression is near-absent in the final pre-ovulatory stages of development. In normal women it has been estimated that 60% of serum AMH is derived from follicles 5–8 mm in diameter (Jeppesen et al., 2013). More recently, it has been suggested that AMH production and/or follicular dynamics are altered acutely in response to being unwell. Young girls diagnosed with haematological or other childhood cancers exhibited decreased concentrations of AMH compared with their healthy peers at the time of initial diagnosis (van Dorp et al., 2014). In this cohort of 208 girls with newly diagnosed cancer AMH was also negatively associated with markers of general health including body temperature, C-reactive protein and anemia. Similarly, lower AMH levels have been reported in adults with breast cancer, lymphoma and acute onset Crohn’s disease than in healthy (though infertile) controls (Lawrenz et al., 2012; Şenateş et al., 2013; Su et al., 2013a). These data thus indicate the importance of general health in ovarian function, and consequently in interpreting tests of ovarian follicular activity.
women, with 17 out of 22 women under 38 years showing a variation in AMH concentration >0.5 ng/ml within one cycle (Overbeek et al., 2012). Evidence of statistically significant differences in mean values across the cycle can be misleading in studies aiming to assess the variation of AMH at the individual level. Analysis of the true intra-individual cycle variation indicated that the intraclass correlation coefficient (ICC) was 0.96 indicating that the between-subject variation was responsible for the larger proportion of the observed cyclical variation and only 4% of the variation was true within-subject variation related with the phase of the cycle (Deb et al., 2013).

Studies using the Gen II assay have confirmed cyclic variation with higher AMH in the late follicular phase (Hadlow et al., 2013), more evident in younger women with higher mean AMH levels (Kissell et al., 2014, Randolph et al., 2014). Figure 2 demonstrates the intra-cycle variation of AMH levels stratified by age categories in 259 women. Although the variation of AMH within a cycle was statistically significant, it had minimal impact on clinical performance and was not large enough to warrant a shift in clinical practice towards timing AMH measurement (Kissell et al., 2014).

To date, one study has addressed the circadian variation in AMH in a cohort of 19 women (Bungum et al., 2011). AMH (measured with the IOT assay) was lowest in the early morning hours (4 and 6 a.m.) with a maximum mean difference from its zenith values of 1.9 pmol/l (10.6%). AMH was relatively stable during daytime, when venepuncture is routinely performed, thus this result, though of interest, is not of clinical relevance. In contrast, the same study demonstrated that FSH, still used as a marker of ovarian response in some clinics, and other ovarian-derived hormones (estradiol and progesterone) exhibited substantial circadian fluctuation even during daytime (Bungum et al., 2011). Collectively the data suggest that although AMH can vary across the menstrual cycle this variability may be primarily of potential value in detailed analysis of follicle growth patterns (Baerwald et al., 2012) and is not large enough to warrant restricting AMH measurements to a specific day or phase of the menstrual cycle.

The between cycle variability of AMH has been evaluated in studies using either IOT or DSL assay, but not the AMH Gen II assay. However, the results do not indicate assay specific variation. AMH, measured over 3 consecutive cycles, had an ICC of 0.89, which was significantly higher than that of FSH, inhibin B or AFC (0.55, 0.76, 0.73, respectively) (Fanchin et al., 2005) indicating lower variability. Age-adjusted ICC for AMH across four consecutive cycles was found to be 0.89 (95% CI, 0.84–0.94), indicating that only 11% of the inter-cycle variability was attributable to intra-individual fluctuation (van Dissingeldorf et al., 2010); the ICC of AFC determined at the same time points was significantly lower (0.71, 95% CI 0.63–0.77). These analyses suggest that repeat measurements of AMH during subsequent cycles are not necessary for accurate patient assessment.

Antral follicle count

The developmental pathway from primordial follicle to ovulation is associated with approximately a 500-fold increase in follicular diameter (Charleston et al., 2007). Primordial follicles have a diameter of ~30 μm, and thus cannot be visualized; the development of the fluid-filled antrum provides the necessary physical structure to give a change in ultrasound reflectivity and thus allow potential detection, although this occurs at sub-millimetre diameters (Gougeon 1986) thus the smallest antral follicles cannot be visualized by current technology. Antral follicles in the range 2–10 mm can readily be counted on transvaginal sonography (TVS) to quantify an AFC and thereby predict ovarian response (Broekmans et al., 2006), although some clinics use a more limited range due to the increased variability in number of the larger follicles (Deb et al., 2013).

Factors that can influence AFC

Technical issues

The theoretical advantage of AFC over a biochemical marker is that TVS is available in any reproductive clinic; hence AFC can be readily performed and provides immediate results. That the wide availability of ultrasound may have compounded the technical issues has not been fully appreciated. Inter-observer and intra-observer variability in AFC determination have been robustly analysed (Hansen et al., 2003; Deb et al., 2009), illustrating the key limitation of this biomarker as currently performed. The commonly used 2-dimensional (2-D) technique in estimating the AFC has wide limits of agreement varying from +8 to −7 follicles when two consecutive measures are performed by the same operator or +7 to −5 follicles with two different experienced operators (Deb et al., 2009). This is sufficient to alter clinical management at an individual level and can introduce significant measure bias when pooling data in clinical research (Arce et al., 2013b). The reproducibility of the test improves only modestly when 3-D technique and offline analysis of the stored images is performed (Merce et al., 2005; Jayaprakasan et al., 2007, 2008; Deb et al., 2009), with additional analysis time and expense, increased workload and loss of the benefit of immediacy. The limits of agreement between consecutive measurements of AFC become significantly narrower when automatic analysis and counting or post-processing are implemented (Deb et al., 2009); however, the drawbacks of longer offline analysis persist and this approach has not been widely adopted. In addition, the validity of automated analysis is questionable given that it only counts approximately one-third of the antral follicles (Baerwald et al., 2012; Deb et al., 2009).
follies measured with manual or the post-processing techniques (Deb et al., 2009).

A consensus statement was expected to resolve the issues of the large variability in AFC measurement by describing in detail the optimal technique with the use of the appropriate ultrasound probe in carefully selected patients (Broekmans et al., 2010). However, this report excluded women with previous ovarian surgery, ovarian endometriosis and women with a single ovary or irregular cycles, thereby excluding a significant proportion of the patients seen in a fertility clinic. Furthermore, the technical settings of ultrasound, such as depth, gain and focus, were not discussed (Broekmans et al., 2010). This contrasts with the use of ultrasound-based biomarkers such as nuchal translucency in prenatal diagnosis, which continuously undergo rigorous external quality assessment to ensure homogeneity and high accuracy in measurement by certified clinicians. An annual licensing arrangement run by the Fetal Medicine Foundation is undertaken for nuchal translucency, with retraining and removal of individual sonographers from their register the penalty for non-compliance. The lack of this standardization for AFC measurement may underlie its limited transportability across different operators, sites and settings. Potentially this issue could be addressed by international organizations, such as the European Society of Human Reproduction and Embryology, with ongoing quality control and annual renewal of licensing of AFC measurement subject to confirmation of adequate quality images. The degree of variation observed even in the research setting when the technique is as standardized as possible between centres (Arce et al., 2013b) illustrates the difficulties that need to be overcome.

The steady improvement in ultrasound resolution over the last decade has led to a recent re-evaluation of the AFC threshold for diagnosing polycystic ovarian morphology, now suggested to increase from ≥12 to ≥25 follicles (Dewailly et al., 2014b). That the upper limit for a normal AFC has more than doubled within such a short time frame is not dissimilar to the issues faced with the AMH assay and lack of standardization. The previous threshold of 12 follicles with currently available high resolution ultrasound would classify an expected ‘normal’ responder as ‘high’ responder with inappropriate selection of AFC stratified hyperstimulation protocols, and suboptimal stimulation for that patient. Likewise, the cut-off values suggested in studies for predicting poor response have evolved substantially from AFC<3 in 1998 (Chang et al., 1998) to <12 in 2009 (Melo et al., 2009). Thus the current suggested AFC thresholds of expected poor or normal ovarian response (Nelson et al., 2007, 2009; Ferraretti et al., 2011; Nelson 2013) may not be transferable to future ultrasound machines which will inevitably have higher resolution. This issue is also illustrated by AFC determination by magnetic resonance imaging, which gives significantly higher values than when measured by ultrasound (Leonhardt et al., 2014a, b). Inevitably AFC thresholds for clinical practice will always be subject to lagging behind the resolution of the available technology thereby adversely impacting on its potential role as a globally applicable biomarker.

With regard to patient acceptability of TVS we are not aware of work to date specifically targeting the views of infertility patients. Studies have reported that patients regard transvaginal scans as uncomfortable procedures but they are willing to undergo the procedure if recommended, while others have reported that only 10% of patients find the procedure embarrassing, stressful or uncomfortable (Dutta and Economides 2003, Basama et al., 2004). Additionally, transvaginal ultrasound provides a wealth of useful clinical data above that of just AFC measurement, justifying its place as a pivotal investigation for infertility patients (Kelly et al., 2001).

Inter-individual variation

Factors affecting AFC have been understudied relative to AMH but are likely to be similar given that they both reflect similar stages in the highly dynamic processes of follicular activity. In contrast to the large population cohorts for analysis of AMH, assessment of the relationship of AFC with age has only been examined in relatively small sample sizes (Broekmans et al., 2004; Almog et al., 2011a; La Marca et al., 2011; Wiweko et al., 2013). Although all confirm an age-related decline in AFC, they also recognize the substantial variation present at a given age. A single cross-sectional study suggested ethnic differences, with the average age-specific AFC in Indian women lower than in Caucasians. However the study did not provide 95% CIs for each ethnic specific regression line and was limited by its sample size (n = 229 Caucasians, n = 236 Indian women) (Iglesias et al., 2014). Smokers were reported as having a lower AFC compared with non-smokers of similar age (Freour et al., 2012). It is unclear whether this is a result of accelerated depletion of the primordial pool or modified follicular recruitment among smokers. The former mechanism of the effect of smoking on the ovaries has been suggested in animal models (Tuttle et al., 2009; Gannon et al., 2012) and may also be relevant in human fetal ovaries (Anderson et al., 2014) and linked with the increased risk of earlier onset of menopause among current smokers (Wellons et al., 2013). As with AMH, AFC is reduced in cancer patients at the time of diagnosis (Ebbel et al., 2011). It is also now clear that AFC behaves similarly to AMH in response to exogenous hormones (Hansen et al., 2003). Gonadotrophin suppression caused by the contraceptive pill decreased the number of antral follicles, in particular of those measuring >6 mm in diameter (Deb et al., 2012). In line with this, a cross-sectional study showed that women taking the contraceptive pill had persistently lower AFC compared with women of the same age with natural cycles (Bentzen et al., 2012).

Confirmation of the effect size of these factors on AFC would be useful, but is unlikely to have an impact on the clinical application of AFC for prediction of ovarian response given that these factors are not modified prior to ovarian stimulation.

Intra-individual variation

AFC exhibits significant variation within and across consecutive cycles (Hansen et al., 2003; Eter et al., 2005; van Dusseldorp et al., 2010; Deb et al., 2013). Assessment of the ICC of AFC showed that it had a modest ICC of 0.71 between two cycles and of 0.69 within one cycle, substantially worse than for AMH; 0.89 and 0.87, respectively (van Dusseldorp et al., 2010). The source of this intra-cycle variability appears to be the variation in the number of the larger follicles (6–10 mm in diameter) (Deb et al., 2013). Given these concerns the consensus statement suggested that AFC should be performed from Day 2 to Day 4 of an index cycle (Broekmans et al., 2010). This recommendation is a significant limitation and inconvenience to both patient and clinic, and does not apply to women with irregular cycles.

In conclusion, despite its ready availability in every reproductive clinic, AFC is most accurately applied to well selected patients, has limited flexibility in relation to the phase of the cycle and exhibits substantial
Comparison of AMH and AFC performance in predicting ovarian response

AMH and AFC have often been considered as interchangeable biomarkers for the prediction of ovarian response prior to commencement of ovarian stimulation. Acceptance of this is highlighted by their recent inclusion as alternative independent markers, combined with age, in the consensus statement on the definition of expected poor response (Ferraretti et al., 2011). At the other end of the ovarian response spectrum, despite excessive ovarian response not having an equivalent consensus statement definition, stratified stimulation algorithms with indicative starting dosing of gonadotrophins have been developed based on specific cut-offs of either single biomarker to avoid oocyte yields in excess of 15–20 oocytes (La Marca et al., 2012, 2013; Nelson 2013). Given that many centres may have had limited access to both biomarkers or exhibit preference for one or the other, there has been consideration of their potential overlap and their relative strengths.

Observational cohort data assessing predictive performance of AMH and AFC

In excess of 40 cohort studies and an IPD meta-analysis have examined the performance of AMH in the prediction of poor ovarian response (La Marca and Sunkara, 2014). Widely ranging threshold values for apparent optimal trade-off between sensitivity and specificity have been proposed. That the threshold values for AMH range from 0.1 ng/ml to 2.97 ng/ml primarily arises from the considerable heterogeneity introduced by the use of three different AMH assays, the inconsistencies in the definition of poor response and variable baseline characteristics and fertility potentials of the participants across the studies. Despite these limitations, the majority of the pooled studies reported that AMH has sensitivity >70% and specificity over 70% in predicting poor response in women undergoing fertility treatment (La Marca and Sunkara, 2014). Similarly 22 cohort studies and one IPD meta-analysis have assessed the performance of AFC (La Marca and Sunkara, 2014); the performance characteristics of AFC also varied substantially among the studies, with threshold values ranging from 3 to 12, but the body of evidence suggests equivalent sensitivity and specificity to AMH in poor response prediction.

Single centre studies evaluating both biomarkers for the prediction of poor response have also generally not revealed significant differences in their performance (Van Rooij et al., 2002; Muttukrishna et al., 2005; K wee et al., 2008; Jayaprakasan et al., 2010) although a minority of studies demonstrated significant superiority of one marker over the other; AFC over AMH (Mutlu et al., 2013) or AMH over AFC (Ficicioglu et al., 2006; Mcllveen et al., 2007). A systematic review assessing the performance of each biomarker echoed the above findings summarizing that both biomarkers have equivalent receiver operating characteristic (ROC) curves in the prediction of poor response (Broer et al., 2009). This finding was replicated in a recent IPD analysis which demonstrated that the area under the curve (AUC) of the age-adjusted ROC curve for AMH in predicting poor response was 0.77 (95% CI: 0.70–0.83), practically identical to that of AFC (AUC 0.79, 95% CI: 0.73–0.85) (Broer et al., 2013b).

For excessive response the same issues have been observed; there have been in excess of 16 cohort studies and one IPD meta-analysis for AMH with a diverse range of threshold values and associated performance characteristics reported. For AFC there have been seven cohort studies and one IPD meta-analysis, but again no consensus on an overall threshold and anticipated performance. Cumulative analyses suggest comparable accuracy of AMH and AFC in predicting excessive ovarian response (Broer et al., 2011, 2013a; La Marca and Sunkara, 2014).

Collectively the above data provide apparent confirmation that both markers are equally effective at predicting poor and excessive ovarian response. However, observational cohort studies from individual clinics may have potentially inflated the performance of the association between exposure (ovarian reserve test) and outcome (response), particularly because the value of the test may have influenced the allocation of treatment and thus the outcome of interest (ovarian response) or through confounding, a known major limitation of observational studies. It is possible to reduce confounding in observational studies by restriction or matching, and in the statistical analysis by techniques such as stratification or multivariable analyses. These methods however require that the confounding variables are known and measured. Notably few of the single centre studies have undertaken this level of detailed analysis. In contrast a key strength ofRCTs is that the randomization process allows the investigator to assume that not only known but also unknown potential confounders are distributed evenly among the treatment arms (Weinberg, 1993).

Although the generalizability of RCTs can be limited due to the often stricter inclusion criteria and rigid protocols, RCTs are specifically designed to overcome the issues of differential confounding and selection bias between the treatment groups, making them strong candidates to examine the strength of association between exposures and outcomes of interest, and hence their widespread recognition as providing high-level evidence. The marked heterogeneity in reported threshold values and performance characteristics from the single centre studies implies that each individual centre would be required to develop its own thresholds. This does not have biological plausibility: there should not be marked heterogeneity in ovarian response of two biologically identical women treated in two different centres using an identical protocol. In the absence of such biological identity, we can assess how these models have performed in RCTs. Only one RCT has been specifically designed to compare AMH and AFC (with other markers) as predictive biomarkers (Andersen et al., 2011). However both have been included in four studies of protocols of ovarian stimulation for IVF (Andersen et al., 2011; Arce et al., 2013b; Nelson et al., 2014; Oeheinger et al., 2013). The comparison of AMH and AFC in these is thus a secondary or post hoc analysis, and therefore potentially not as robust as if it were the primary analysis as it was one for one trial. Issues of study design are also relevant, particularly if AMH is measured centrally while AFC is derived locally which will inherently favour AMH. However the relative ease of standardization of hormone assay, with established quality control systems, such as the UK National External Quality Assessment Service (NEQUAS), compared with ultrasound analysis is an inherent potential advantage of AMH in determining clinically relevant cut-off values for widespread use as well as in multicentre research.

RCTs assessing predictive performance of AMH and AFC

Initial doubts about the equivalence of AFC and AMH in response prediction started appearing when the pharmaceutically sponsored international multicentre Xpect trial failed to show an independent association between AFC and the number of retrieved oocytes...
Biomarkers of ovarian response

705

controlled ovarian stimulation or no pretreatment (Andersen et al., 2011). When poor or excessive response were assessed as dichotomous outcomes, AMH remained a significant predictive variable in each treatment arm, with no independent association observed for AFC. Notably the specific purpose of this trial was to identify factors capable of predicting ovarian response in patients undergoing their first treatment cycle with a daily dose of 200 IU recombinant FSH in a GnRH antagonist protocol, further strengthening the conclusion that AMH was the superior biomarker.

A subsequent pharmaceutically sponsored international multicentre RCT of two gonadotrophin preparations (MEGASET trial) added significant weight to the above findings. This study demonstrated a significant association between AMH and oocyte yield, number of blastocysts and cumulative live birth, but surprisingly it did not detect a significant univariate association between AFC and any of these outcomes (Arce et al., 2013b); consequently only AMH was associated with oocyte yield in multivariate models. Although the findings of the trial were initially criticized as potentially being attributable to marked operator variability across centres, secondary analysis demonstrated that there were only weak associations between AFC and oocyte yield within individual centres (Arce et al., 2013a). Retrospective analysis of another multicentre RCT (MERIT trial) comparing two different gonadotrophins in a long GnRH agonist protocol has also demonstrated that AMH had consistently greater association with ovarian response compared with AFC across different sites (Nelson et al., 2014). This site-specific analysis of the correlation of AFC and AMH with oocyte yield overcomes objections that the superior performance of AMH over AFC in these two multicentre trials may have been attributed to marked sonographer-dependent variability across the study sites and integrated data evaluation rather than by the actual performance at each study centre (Fig. 3). Multivariate analysis confirmed that knowledge of AFC did not enhance the predictive power of AMH in these two trials. Apparent conflicting findings resulted from the retrospective analysis of the Engage trial, a double-blind RCT assessing the ongoing clinical pregnancy rate after a bolus dose of corifollitropin alfa versus daily recombinant FSH (rFSH) injections, which supported the inclusion of AFC in prognostic models for high and low response (Broekmans et al., 2013); however AMH was not measured. Retrospective analysis of the Pursue trial, similar to Engage in design, has shown that models incorporating only age and AMH have optimal characteristics in predicting high and low responders, whereas inclusion of AFC in the models only minimally improved the performance of the models (Oehinger et al., 2013). Table II summarizes the performance characteristics of the univariate or composite models, which include AMH or AFC as predictor variables from the above trials.

In a Phase II trial of a novel rFSH (FE 999049), a range of biomarkers were considered for prediction of ovarian response (NCT01426386). Of those examined (age, AMH, AFC, FSH, inhibin B), AMH was the best predictor of ovarian response. The inclusion of the other markers either did not improve the prediction or had a negligible contribution to the explanation of the variation in oocytes retrieved (Ferring Pharmaceuticals, personal communication). AMH driven dosing for the novel rFSH (FE 999049) is now being examined in an international multicentre trial (NCT01956110).

These consistent data from several large scale RCTs assessing biomarker performance in the prediction of ovarian response indicate the inherent limitations of AFC to predict ovarian response in a multicentre context, whereas AMH, when centrally analysed, is the more accurate biomarker under those conditions.

Conclusion

Significant changes have occurred in the measurement techniques for both AMH and AFC over the last decade such that the appropriate reference values for both biomarkers have changed substantially, and indeed further change is expected. Both reflect a very similar ovarian follicle population, thus, if perfectly measured, would be expected to
have similar value; this, supported by single site observational cohorts, underpins the classical viewpoint that these biomarkers exhibit equivalent performance characteristics for the prediction of ovarian response. However it appears likely that this equivalence has been overstated, inflated by study design, and emerging data from large scale multicentre RCTs indicate substantially better performance of AMH. International standardization of AMH combined with a robust automated assay is likely to enhance its status as the biomarker of ovarian response of choice. However the advantages of AFC will mean that it will continue to have an important role in clinical practice. The challenge for ultrasonography is to improve standardization of analysis to reduce the equipment- and observer-based aspects of variability. We therefore propose (Fig. 4) that AFC and AMH will have complementary roles in the pre-assessment of the infertile woman.

Table II Performance characteristics of prognostic models for ovarian response resulting from analyses of RCT data.

<table>
<thead>
<tr>
<th>Trials</th>
<th>Low ovarian response</th>
<th>Performance characteristics</th>
<th>High ovarian response</th>
<th>Performance characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Predictor variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xpect</td>
<td>AMH</td>
<td>AUC: 0.84</td>
<td>AMH</td>
<td>AUC: 0.77</td>
</tr>
<tr>
<td></td>
<td>AMH & smoking</td>
<td>AUC: 0.85</td>
<td>AMH & AFC</td>
<td>AUC: 0.80</td>
</tr>
<tr>
<td>MEGASET</td>
<td>AMH</td>
<td>AUC: 0.78/0.90</td>
<td>AMH</td>
<td>AUC: 0.77/0.81</td>
</tr>
<tr>
<td></td>
<td>AFC</td>
<td>AUC: 0.67/0.74</td>
<td>AFC</td>
<td>AUC: 0.64/0.65</td>
</tr>
<tr>
<td>Engage*</td>
<td>Age</td>
<td>AUC: 0.63</td>
<td>Age</td>
<td>AUC: 0.64</td>
</tr>
<tr>
<td></td>
<td>Age & AFC</td>
<td>AUC: 0.75</td>
<td>Age & AFC</td>
<td>AUC: 0.75</td>
</tr>
<tr>
<td>Pursue</td>
<td>Age</td>
<td>AUC: 0.61</td>
<td>Age</td>
<td>AUC: 0.61</td>
</tr>
<tr>
<td></td>
<td>Age & AMH</td>
<td>AUC: 0.87</td>
<td>Age & AMH</td>
<td>AUC: 0.86</td>
</tr>
<tr>
<td></td>
<td>Age & AMH & AFC</td>
<td>AUC: 0.88</td>
<td>Age & AMH & AFC</td>
<td>AUC: 0.88</td>
</tr>
<tr>
<td>MERIT</td>
<td>AMH</td>
<td>R^2: 0.29</td>
<td>AMH</td>
<td>R^2: 0.23</td>
</tr>
<tr>
<td></td>
<td>AFC</td>
<td>R^2: 0.07</td>
<td>AFC</td>
<td>R^2: 0.07</td>
</tr>
<tr>
<td></td>
<td>AMH & AFC</td>
<td>R^2: 0.30</td>
<td>AMH & AFC</td>
<td>R^2: 0.23</td>
</tr>
<tr>
<td>MEGASET</td>
<td>AMH</td>
<td>R^2: 0.23</td>
<td>AMH</td>
<td>R^2: 0.23</td>
</tr>
<tr>
<td></td>
<td>AFC</td>
<td>R^2: 0.07</td>
<td>AFC</td>
<td>R^2: 0.07</td>
</tr>
<tr>
<td></td>
<td>AMH & AFC</td>
<td>R^2: 0.23</td>
<td>AMH & AFC</td>
<td>R^2: 0.23</td>
</tr>
</tbody>
</table>

AUC: area under the curve of receiver operating characteristic curve, AFC: antral follicle count.

*AMH was not measured.

*Performance in each treatment arm.

![Figure 4](https://i.imgur.com/3J5Q5QG.png)

Figure 4 Relative contribution of ultrasound and AMH in the pre-IVF assessment of the female partner. We propose this as an optimal pathway for patient management reflecting the complementary roles of ultrasound and AMH in pretreatment assessment of women about to undergo IVF.
Authors’ roles
The review was developed from a presentation by S.M.N. at the 2nd Biomarker Meeting in Reproductive Medicine 24–26 April 2014 Valen-
cia, Spain. S.I., R.A.A. and S.M.N. all contributed substantially to the
design of the literature review. The systematic literature search was
performed separately by S.I. and S.M.N., with S.I. and S.M.N. preparing
the first draft. All authors edited and approved the final draft.

Funding
None declared.

Conflict of interest
R.A.A. has undertaken consultancy work and received speaker’s fees
from Beckman Coulter, Roche Diagnostics and Ansh Laboratories.
S.M.N. has undertaken consultancy work and received speaker’s fees
from Beckman Coulter, Ferring Pharmaceuticals, Merck Serono, MSD
and Roche Diagnostics.

References
Almog B, Shehata F, Shalom-Paz E, Tan SL, Tulandi T. Age-related normogram for antral
Almog B, Shehata F, Sussa S, Holzer H, Shalom-Paz E, La Marca A, Mutukrishna S,
antimullerian hormone levels in a population of infertile women: a multicenter
Andersen AN, Wijte H, Gordon K, Mannerts B. Predictive factors of ovarian
response and clinical outcome after IVF/ICSI following a rFSH/GnRH antagonist
protocol with or without oral contraceptive pre-treatment. Hum Reprod 2011;
26:3413–3423.
Lawlor DA. Anti-mullerian hormone is not associated with cardiometabolic risk
Anderson RA, Themmen AP, Al-Qahtani A, Groome NP, Cameron DA. The effects of
chemotherapy and long-term gonadotropin suppression on the ovarian reserve in
Anderson RA, Nelson SM, Wallace WH. Measuring Anti-Mullerian hormone for
the assessment of ovarian reserve: when and for whom is it indicated? Maturitas
2010; 70:28–33.
Anderson RA, Mcllwain L, Coutts S, Kinnell HL, Fowler PA, Childs AJ. Activation of
the aryl hydrocarbon receptor by a component of cigarette smoke reduces germ cell
Anshlabs picoAMH ELISA package insert. Available at: http://www.anshlabs.com/
diagnosmed.com/sites/default/files/Ultra%20Sensitive%20AMH%E2%80%93
Elsa.pdf (May 2014, date last accessed).
Arce JC, La Marca A, Minner Klein B, Nyboe Andersen A, Fleming R. Antimullerian
hormone in gonadotropin releasing-hormone antagonist cycles: prediction of
ovarian response and cumulative treatment outcome in good-prognosis patients.
Arce JC, La Marca A, Klein BM, Nyboe Andersen A, Fleming R. Reply of the authors. Fertil
Steril 2012b; 100 e10.
Baerwald AR, Adams GP, Pierson RA. Ovarian antral folliculogenesis during the human
Baker ML, Metcalf SA, Hutson JM. Serum levels of mullerian inhibiting substance
in boys from birth to 18 years, as determined by enzyme immunoassay. J Clin
Endocrinol Metab 1990; 70:11–15.
Basama FM, Cross DL, Price A. Women’s perception of transvaginal sonography in the
first trimester; in an early pregnancy assessment unit. Arch Gynecol Obstet 2004;
269:117–120.
Beckman Coulter AMH Gen II ELISA package insert 2013.
Bentzen JG, Forman JL, Pinborg A, Lidegaard Ø, Larsen EC, Fris-Hansen L,
Johannsen TH, Nyboe Andersen A. Ovarian reserve parameters: a comparison
between users and non-users of hormonal contraception. Reprod Biomed Online
antral follicle subclasses and anti-mullerian hormone during normal reproductive
Bleich ME, Gregorich SE, Adler NE, Sternfeld B, Rosen MP, Cedars MI. Race/ethnic
disparities in reproductive age: an examination of ovarian reserve estimates across
four race/ethnic groups of healthy, regularly cycling women. Fertil Steril 2014;
Broekmans FJ, Faddy MJ, Scheffer G, te Velde ER. Antral follicle counts are related
to age at natural fertility loss and age at menopause. Menopause 2004;
Broekmans FJ, Kwee J, Hendriks DJ, Mol BW, Lambalk CB. A systematic review
of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update 2006;
12:685–718.
Broekmans FJ, de Ziegler D, Howles CM, Gougeon A, Trew G, Olivennes F. The antral
follicle count: practical recommendations for better standardization. Fertil Steril
2010; 94:1044–1051.
Broekmans FJ, Verweij PJ, Eijkemans MJ, Mannerts BM, Witjes H. Prognostic models
for high and low ovarian responses in controlled ovarian stimulation using a GnRh
Broer SL, Mol BWJ, Hendriks D, Broekmans FJM. The role of antimullerian hormone in
prediction of outcome after IVF: comparison with the antral follicle count. Fertil Steril
Broer SL, Dolleman M, Opmeer BC, Fauser BC, Mol BW, Broekmans FJM. AMH and
AFC as predictors of excessive response in controlled ovarian hyperstimulation:
Broer SL, Dolleman M, van Disselkop J, Broeke KA, Opmeer BC, Bossuyt PM,
Eijkemans MJC, Mol BWJ, Broekmans FJM, Anderson RA et al. Added value of
ovarian reserve testing on patient characteristics in the prediction of ovarian
response and ongoing pregnancy: an individual patient data meta-analysis. Fertil Steril
2013a; 100:420–429.e7.
Broer SL, van Disselkop J, Broeke KA, Dolleman M, Opmeer BC, Bossuyt P,
Eijkemans MJ, Mol BWJ, Broekmans FJM, Anderson RA et al. Added value of
ovarian reserve testing on patient characteristics in the prediction of ovarian
response and ongoing pregnancy: an individual patient data approach. Hum Reprod
Update 2013b; 19:26–36.
Brouwer J, Laven JS, Hazes JM, Schipper I, Dolhain RJ. Levels of serum anti-Mullerian
hormone, a marker for ovarian reserve, in women with rheumatoid arthritis.
Bungum L, Jacobsson AK, Rosen F, Becker C, Andersen CY, Guner N, Givertzman A.
Circadian variation in concentration of anti-Mullerian hormone in regularly
menstruating females: relation to age, gonadotrophin and sex steroid levels. Hum Reprod
2011; 26:678–684.
Charleston JS, Hansen KR, Thyer AC, Charleston LB, Gougeon A, Seibert JR,
Soures MR, Klein NA. Estimating human ovarian non-growing follicle number:
the application of modern stereology techniques to an old problem. Hum Reprod
Chang MY, Chiang CH, Hsieh TT, Soong YK, Hsu KH. Use of the antral follicle count to
predict the outcome of assisted reproductive technologies. Fertil Steril 1998; 69:
505–510.
Elevated anti-Mullerian hormone (AMH) and inhibin B levels in prepubertal girls
Cui Y, Shi Y, Cui L, Han T, Gao X, Chen ZJ. Age-specific serum antimullerian hormone
levels in women with and without polycystic ovary syndrome. Fertil Steril 2014;
Deb S, Jayaprakasan K, Campbell BK, Clewes JS, Johnson IR, Raine-Fenning NJ.
Intraobserver and interobserver reliability of automated antral follicle counts
made using three-dimensional ultrasound and Sonovue. Ultrasound Obstet Gynecol

Iliodromiti S, Kelsey TW, Anderson WA, Nelson SM. Anti-Mullerian hormone concentration during the menstrual cycle may change the diagnosis of polycystic ovary syndrome. *Clin Endocrinol* 2006;61:4057–4063.

Sanchez E, Colas Y, Erdem ED, Yesil A, Coşkunpinar Em, Sahin O, Altunza ME, Tuncer I, Kurali Ovunc AO. Serum anti-Mullerian hormone levels are lower in reproductive-age women with Crohn’s disease compared to healthy control women. J Crohns Colitis 2013;7:e29–e34.

