Enhanced B cell activation in the absence of CD81

Mrinmoy Sanyal, Rosemary Fernandez and Shoshana Levy

Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA

Keywords: B cell activation, calcium mobilization, knockout, signal transduction, tetraspanin, TLR4

Abstract

CD81 is a component of the CD19/CD21 co-receptor complex in B cells. However, the role of CD81 in B cell activation has not been clearly elucidated. Here, we demonstrate that Cd81−/− B cells stimulated via their B cell receptor fluxed higher intracellular-free calcium ion along with increased phosphorylation of spleen tyrosine kinase and phospholipase gamma 2. Additionally, Cd81−/− B cells responded to toll like receptor 4 stimulation with increased nuclear factor-kappa B activation, cell proliferation and antibody secretion compared with wild-type B cells. Cd81−/− mice also mounted a significantly higher immune response to T-independent antigens than their wild-type counterparts. Finally, analysis of Cd81−/− B cells that were generated by bone marrow transplantation into Rag1−/− mice confirmed that the hyperactive phenotype is not dependent on the CD81-deficient environment. Taken together, these results indicate that CD81 plays a negative role in B cell activation in vitro and in vivo.

Introduction

CD81 is a tetraspanin molecule—it is embedded in the plasma membrane by four transmembrane domains that flank a small and a large extracellular loop and short amino and carboxyl termini (1). Most eukaryotic species, including fungi, plants, insects and vertebrates, express members of this family, implying that tetraspanins play an important physiological role (2, 3). Tetraspanins tend to associate with partner proteins and with each other in subcellular tetraspanin-enriched microdomains (TEMs), which are dynamic membrane entities that serve as signaling platforms (2, 3). The composition of individual TEMs within a single cell varies (4). Thus, the complexity of their interactions with each other and with partner proteins makes it difficult to decipher the independent function of tetraspanins.

The tetraspanin CD81 is widely expressed and is associated with different partner proteins in different cell lineages (5). CD81 has been implicated in diverse biological interactions, including egg-sperm and muscle cell fusion, syncytium formation and in immune and viral synapses (2, 3). Importantly, two major human pathogens, hepatitis C virus (6) and the malaria causing Plasmodium falciparum (7), depend on CD81 for at least one step of their infection cycle.

In B lymphocytes, CD81 associates directly with CD19 and indirectly with CD21 (8, 9). Co-engagement of the B cell receptor (BCR) and the CD19/CD21/CD81 co-receptor complex has been shown to reduce the threshold of B cell activation (10). This is a recognition mechanism that bridges the innate and adaptive immune systems, where opsonized antigens bind BCR and the complement receptor (CD21) and dually activate signal transduction via Igαβ and via the signaling molecule CD19 (11–15).

CD81 is required for normal cell surface expression of CD19. Genetic ablation of CD81 in three independently derived lines of mice led to a consistent reduction in CD19 expression (16–18). In addition, a CD81-deficient patient was recently identified who lacked CD19 expression in her B cells (19). Thus, normal expression of CD19 both in mice and in human is dependent on CD81. Moreover, in mice, this reduction of CD19 expression can be corrected by re-expression of human CD81 in vivo and in vitro (20–22).

Despite the consistent finding that CD81 expression is reduced in the absence of CD81, a clear role for CD81 in B cell function has not emerged (16–18). In vitro analyses of the B cell response to BCR stimulation have not given consistent results (17, 18). Similarly, inconsistent results have been obtained from in vivo immunization studies of the different CD81-deficient lines (16–18). Therefore, we re-examined the role of CD81 in B cell function. We show by various measures that activation of Cd81−/− B cells in vitro either through the BCR or through the toll like receptor (TLR) 4 pathway resulted in a hyperactive cellular response. In addition, Cd81−/− mice mounted increased immune responses to T-independent antigens in vivo. These observations are consistent with each other and suggest that CD81 functions as a negative regulator of B cell activation.
Methods

Mice

Heterozygous mice from the eighth backcross to BALB/c were bred and CDb11−/− and wild-type littermates were used in these studies (16). These and BALB/c Rag1−/− mice were bred at Stanford. All animals were maintained at Stanford according to Public Health Service Policy for Humane Care and Use of Laboratory Animals.

Antibodies

The following antibodies were conjugated with fluochrome at Stanford University: M1/70 (anti-Mac-1/CD11b), 8C5 (anti-Gr-1), 6B2 (anti-B220), 145-2C11 (anti-CD3), GK1.5 (anti-CD4), 53-6.7 (anti-CD8), 331 (anti-IgM), 11-26 (anti-IgD), 6C31BP1 (anti-BP-1) and B3-B4 (CD23). mAbs against B220, CD19, CD11b, CD11c, Gr-1, Ki67, phospho-phospholipase gamma 2 (PLCγ2) (pY759), phospho-spleen tyrosine kinase (Syk) (pY351) and isotype controls were purchased from BD Pharmingen (San Diego, CA, USA). Goat F(ab')2 anti-mouse IgM and IgG fragments were purchased from Jackson Immunoresearch (West Grove, PA, USA). Biotinylated antibodies were visualized with streptavidin-conjugated FITC, PE, Cy5.5 PE and Alexa594 (BD Pharmingen). Rabbit mAbs specific for phospho-nuclear factor-kappa B (NF-κB) (Ser536), phospho-extracellular signal-regulated kinase (Erk1/2) (Thr202/Tyr204) and rabbit polyclonal IκB-α were purchased from Cell Signaling Technology, Danvers, MA, USA. Anti-actin antibody (clone C4) was purchased from (Millipore, Temecula, CA, USA). The complete list of antibodies used for flow cytometry is presented in supplementary Table S1 (available at International Immunology Online).

High-dimensional (11-color) flow cytometry

Peripheral blood (7–10 drops) was collected in 500 μl of 1 mM EDTA in PBS and incubated with 1 ml of 2% dextran in PBS for 2 h at 37°C. The supernatant was transferred to a fresh tube for red cell lysis. Bone marrow cells were harvested by flushing femurs and tibias into 1 ml PBS containing 2% fetal bovine serum. Single-cell suspensions from different tissues were harvested by injection of 10 ml PBS into the peritoneal cavity of a recently sacrificed mouse, the abdomen was massaged for 1 min, and the PBS was withdrawn. To eliminate red blood cells, single-cell suspensions from different tissues were incubated with red cell lysis buffer (150 mM NH4Cl) for 5 min and washed with 10 v of PBS (23).

Cells were stained with cocktails of fluochrome-conjugated antibodies (supplementary Table S1 is available at International Immunology Online). Surface staining (23) and intracellular staining (24) were performed as described. ‘Fluorescence-minus-one’ controls were included to determine the level of non-specific staining and auto-fluorescence associated with subsets of cells in each fluorescence channel. For surface staining, propidium iodide was added to all samples before data collection to identify dead cells. For staining of fixed samples, dead cells were marked by LIVE/DEAD® Fixable Dead Cell Stain Kits (Molecular Probes, Eugene, OR, USA).

Hi-dimensional (Hi-D) flow cytometry data were collected on a highly modified triple-laser FACS instrument. FlowJo software (TreeStar, San Carlos, CA, USA) was used for fluorescence compensation and analysis.

Measurements of intracellular-free Ca2+ ion

Cells were incubated for 30 min at 37°C with Ca2+-sensitive dyes Indo-1 (2 μg ml−1) (Molecular Probes) in loading buffer (1 mM calcium, 1 mM magnesium and 1% FCS in HBSS). Cells were washed once with loading buffer containing 2.5 mM probenecid (Molecular Probes), which blocks the efflux of intracellular dyes (25). For analysis of Ca2+ flux in different lymphocytes subsets, splenocytes or bone marrow cells were then stained with antibodies specific for B220, IgM, IgD, CD23, CD21 and TCRβ. Before stimulation, lymphocytes were warmed in a 37°C water bath and then analyzed on a Vantage SE cytometer equipped with 350-nm laser (BD Biosciences, San Jose, CA, USA). Baseline intracellular Ca2+ was measured for 1 min followed by the addition of F(ab')2 anti-mouse IgM plus F(ab')2 IgG, as indicated, at a final concentration of 50 μg ml−1 and the response to the stimulation was recorded for additional 4 min. Intracellular calcium flux was determined by measurement of the ratio of 405–485 nm emission after excitation with a 350-nm UV laser, the data were analyzed by FlowJo software.

Phospho-flow analysis

Single-cell suspensions of splenocytes (2 × 106) were stimulated with anti-IgM (50 μg ml−1) in a volume of 100 μl at 37°C for 1–60 min. The cells were then fixed for 10 min by the addition of 10 μl 16% PFA (1.6% final concentration). Fixed cells were washed with PBS containing 3% FCS and then permeabilized with 250 μl cold Perm Buffer III (BD Biosciences) for 10 min and washed with PBS containing 3% FCS followed by staining with the fluochrome-conjugated antibodies Alexa Fluor 647-phospho-Syk, Alexa Fluor 488-phospho PLCγ2, Pacific Blue-B220 and PE-CD3. The stained samples were acquired in a LSR II flow cytometer (BD Biosciences) and analyzed by FlowJo software.

B cell purification

Splenic B cells were purified by positive selection using anti-B220 antibody-conjugated magnetic beads (BD Biosciences) according to the manufacturer’s instruction. Briefly, single-cell suspensions were incubated with anti-B220 antibody magnetic beads for 30 min at 4–8°C and B220-positive cells were isolated using a strong magnetic field (BD Biosciences).

Western blot analysis

Purified B cells were stimulated with 1× SDS sample buffer, heat denatured, electrophoresed and subjected to immunoblotting. Filters were probed with anti-phospho-NF-κB, -phospho-Erk1/2k, IκB-α and β-actin.

Lymphocyte proliferation assays

Purified B cells were incubated with 1 μM carboxyfluorescein succinimidyl ester (CFSE; Invitrogen, Carlsbad, CA, USA) for 7 min in serum-free media at room temperature. Cells
were then washed three times with complete Iscoves's Modified Dulbecco's Medium containing 10% FCS. CFSE-labeled B cells were plated in flat bottom 96-well plates at a density of 0.2 × 10^6 per well and were incubated with anti-IgM F(ab')2 fragments or with LPS (Sigma, St Louis, MO, USA) in the presence of 10 ng ml⁻¹ recombinant IL-4 (R&D Systems, Minneapolis, MN, USA) for 72 h. Cells were washed once with PBS, propidium iodide was added to eliminate dead cells and analyzed by flow cytometry. Cell divisions were quantified by CFSE dilution using FlowJo software.

Analysis of Ki67 expression
Purified B cells (2 × 10⁶) were incubated with goat anti-IgM F(ab')2 fragments or LPS. After 48 h, cells were harvested and washed once with PBS, fixed with 1 ml of cold ethanol at −20°C for 2 h, washed again with 15 v of PBS and stained with anti-Ki67 antibody (clone B56). Finally, cells were stained with 1 μg ml⁻¹ 4',6-diamidino-2-phenylindole and acquired on a FACS Vantage SE flow cytometer equipped with 350-nm UV laser and analyzed by FlowJo software.

Analysis of B cell activation markers
Purified B lymphocytes (5 × 10⁵) were cultured in 96-well flat bottom plates. The cells were stimulated with 12.5 μg ml⁻¹ goat anti-mouse IgM F(ab')2 fragments, 1 μg ml⁻¹ LPS, 5 μg ml⁻¹ CpG (ODN1826) and 10 ng ml⁻¹ IL-4. Expression of the indicated surface proteins was measured by flow cytometry after 24 h.

Bone marrow reconstitution of the lymphoid system in Rag1⁻/⁻ mice
Single-cell suspensions of 2 × 10⁶ whole bone marrow mononuclear cells from the indicated donor mice were injected intravenously into lethally irradiated (900 cGy, using mononuclear cells from the indicated donor mice) 8-week-old male Rag1⁻/⁻ recipient mice. Peripheral blood from the chimeric mice was used to monitor the reconstitution of B and T cells, as detailed above.

Adoptive transfer of B cells to Rag1⁻/⁻ recipients
Purified B cells (20 × 10⁶) from donor spleens were injected intravenously into the sub-lethally irradiated (300 cGy) 8-week-old male Rag1⁻/⁻ recipient mouse.

Immunizations and analysis of immune responses
Mice were immunized by intra-peritoneal injection of 50 μg 2,4,6, trinitrophenol (TNP)-LPS (Biosearch Technologies, Novato, CA, USA). TNP-specific antibodies in the sera of the immunized mice were determined by ELISA. TNP–BSA (Biosearch Technologies) was used as the capture antigen and the reactivity detected by the isotype specific antibodies (Southern Biotech, Birmingham, AL, USA).

Statistical analysis
P values were determined by applying Student's two-tailed t-test for independent samples assuming equal variances on all experimental data sets.

Results

Increased Ca²⁺ influx in CD81-deficient B cells upon BCR induction
One of the early events in B cell activation is an increase in intracellular-free calcium ion (26). To test the role of CD81 in B cell activation, we stimulated cells via their BCR. Splenocytes from Cd81⁻/⁻ and wild-type littermate mice were loaded with the calcium ion sensitive dye Indo-1. The cells were then stained with antibodies against different lymphocyte markers and activated by anti-BCR F(ab')2 fragments. Intracellular-free calcium was measured by flow cytometry. In our experiments, Cd81⁻/⁻ B cells (B220⁺) displayed a markedly increased influx of Ca²⁺ ion upon BCR stimulation compared with B cells from wild-type littermates (Fig. 1A). In these studies, T cells (TCRβ⁺) serve as an important internal negative control and indeed showed no increase in intracellular-free Ca²⁺ under these anti-BCR stimulation conditions (Fig. 1B).

We performed a more detailed analysis and found that most splenic B cell subsets from Cd81⁻/⁻ mice had an increased Ca²⁺ influx compared with wild-type B cells (Fig. 1C). The most prominent increase was observed in follicular B cells (the majority of B cells in the spleen). However, all mature Cd81⁻/⁻ B cells (marginal zone, mixed B cells comprising follicular and B1) had increased Ca²⁺ influx, whereas a subset containing immature (transitional) B cells and some B1 cells was refractory to BCR induction in either genotype. The mature IgM+IgD⁺ B cells in the bone marrow also responded with increased Ca²⁺ ion influx (as detailed later, Fig. 6B).

There was no difference in the representation of the mature B cell subsets between Cd81⁻/⁻ and wild-type mice in the spleen, lymph nodes and in the peritoneum (supplementary Figure S1 is available at International Immunology Online). However, there were fewer splenic immature B cells in Cd81⁻/⁻ mice (Fig. 1C).

Increased phosphorylation of signaling molecules in Cd81⁻/⁻ B cells responding to BCR engagement
To determine whether the signaling pathways downstream of the BCR were enhanced in Cd81⁻/⁻ B cells, we analyzed the phosphorylation of Syk, a BCR proximal kinase. We stimulated splenocytes with anti-IgM antibodies and analyzed the phosphorylation of Syk in both B and T cells by flow cytometry (24). Cd81⁻/⁻ B cells showed increased phosphorylation of Syk compared with wild-type littermate B cells (Fig. 2A, C and E). Again, the T cell population served as an internal negative control and showed no increase in signal, demonstrating the specificity of the phospho-flow assay.

We also examined the activation of PLCγ2, which sustains B cell activation by generating inositol-1,4,5-triphosphate and diacylglycerol that, in turn, affects the concentration of cytosolic Ca²⁺ ions and initiates a positive feedback loop to maintain B cell activation (27). BCR induction led to increased phosphorylation of PLCγ2 in Cd81⁻/⁻ B cells compared with their wild-type counterparts (Fig. 2B, D and E). Therefore, our results show that, in the absence of CD81, stimulation of B cells via BCR led to enhanced early B cell activation events including both an increase in intracellular-free
calcium ion and an increase in the phosphorylation of the downstream signaling kinases.

Increased proliferation of Cd81^{-/-} B cells in response to activation

Previous analyses of the proliferative response of Cd81^{-/-} B cells have been inconsistent (17, 18). Therefore, we purified B cells from Cd81^{-/-} or wild-type littermates, labeled them with CFSE, stimulated them with anti-IgM antibody and analyzed cell division by flow cytometry. This stimulation resulted in a moderate increase in proliferation of Cd81^{-/-} B cells (Fig. 3A). In order to address whether this effect was restricted to activation via the BCR, we stimulated the B cells with LPS (28) to activate the TLR4 pathway. Stimulation by LPS induced a pronounced increase in the proliferation of Cd81^{-/-} B cells (Fig. 3A). These results were confirmed by examining the expression of the proliferation-associated nuclear protein Ki67 (29). The fraction of cycling Cd81^{-/-} B cells was higher than that of wild-type B cells stimulated either by anti-IgM or by LPS (Fig. 3B).

B cell activation and proliferation are generally associated with increased expression of co-stimulatory molecules (30). Initially, we compared the basal levels of CD80, CD86 and CD69 in resting B cells and found no difference between

Fig. 1. Enhanced BCR-induced Ca²⁺ influx in Cd81^{-/-} B cells. Spleen cells were loaded with Ca²⁺-sensitive dye, indo-1 followed by staining with fluorochrome-conjugated antibodies against the indicated B and T cell markers and intracellular-free calcium ion was measured by flow cytometry. (A) B cells were stimulated with F(ab')₂ anti-IgM plus F(ab')₂ anti-IgG (50 μg/ml). Top panels show influx of Ca²⁺ ion in B220⁺ cells as a ratio of fluorescence at 405–485 nm emissions as a function of time. Bottom panels show the merged kinetics of influx of Ca²⁺ in wild-type (blue) and Cd81^{-/-} (red) B cells. Shown are representative of 10 independent experiments. (B) Note that TCR^β did not flux Ca²⁺ in this stimulation condition. (C) Splenic B cell subsets were resolved by fluorochrome-conjugated antibodies. Influx of Ca²⁺ ion in wild-type (left column panels) and Cd81^{-/-} (middle column panels) B cell subsets (gated as indicated) are shown. The merged kinetics of wild-type (blue) and Cd81^{-/-} (red) B cells are shown in the right column panels. All Cd81^{-/-} splenic B cell subsets had an increased influx of Ca²⁺ ion upon BCR stimulation.
and wild-type resting B cells (Fig. 4A). We then purified B cells and activated them via the BCR, TLR4 and TLR9 pathways and by IL-4. Each of these stimuli increased the expression of CD86 and CD69 comparably in Cd81-/- and wild-type B cells (Fig. 4).

Cd81-/- B cells activated via the BCR, TLR4 and TLR9 pathways and by IL-4 increased the expression of CD86 and CD69 comparably. To address whether TLR-mediated signaling in Cd81-/- B cells was enhanced, we stimulated purified B cells with LPS and analyzed the activation of the NF-κB pathway. This analysis demonstrated that TLR-mediated signaling in Cd81-/- B cells was enhanced compared to wild-type B cells.
showed a moderate increase in IκB-α degradation along with a concomitant increase in phosphorylation of NF-κB in Cd81−/− B cells (supplementary Figure S2A is available at International Immunology Online). In addition, phosphorylation of Erk1/2 was initiated earlier and moderately enhanced in Cd81−/− in comparison with wild-type B cells (supplementary Figure S2B is available at International Immunology Online).

Lack of CD81 in the environment does not influence the Cd81−/− B cell phenotype

CD81 is widely expressed and therefore a possibility exists that the observed hyperactive phenotype is the result of an influence by CD81-deficient environment on the developing B cells. To address this possibility, we transplanted bone marrow from Cd81−/− or wild-type animals into Rag1−/− mice (Fig. 5A). The bone marrow of both genotypes reconstituted B and T cell compartments similarly (data not shown). B cells arising from Cd81−/− donors had reduced expression of CD19, similar to that seen in Cd81−/− mice (Fig. 5B) (16–18) demonstrating that CD19 reduction is an intrinsic property of the Cd81−/− donor cells.

We then purified the B cells (Cd81−/− and wild-type) that had regenerated in the Rag1−/− environment and analyzed their response to stimulation by anti-IgM and LPS. The proliferation in response to these stimuli was differentially enhanced in the Cd81−/− B cells recovered from the Rag1−/− hosts (Fig. 5C). We also measured LPS-induced IgM secretion in these purified B cells. Cd81−/− B cells obtained from Rag1−/− chimeras secreted significantly higher amounts of IgM than the wild-type B cells (Fig. 5D). Thus, enhanced sensitivity to activation is not dependent upon the CD81-deficient environment in which these Cd81−/− B cells naturally arise.

The bone marrow of Cd81−/− mice has increased IgM+IgD+ cells

Mice lacking negative regulators of B cell activation, such as CD22 and CD72, frequently have fewer mature B cells in their bone marrow (31). We therefore analyzed mature B cell subsets in all lymphoid locations. Spleen (Fig. 1C), lymph nodes and peritoneal cavity (supplementary Figure S1 is available at International Immunology Online) of Cd81−/− showed a moderate increase in IκB-α degradation along with a concomitant increase in phosphorylation of NF-κB in Cd81−/− B cells (supplementary Figure S2A is available at International Immunology Online). In addition, phosphorylation of Erk1/2 was initiated earlier and moderately enhanced in Cd81−/− in comparison with wild-type B cells (supplementary Figure S2B is available at International Immunology Online).
Role of CD81 in B cell of activation

and wild-type mice had similar, normal, representation of all these subsets. However, in the bone marrow B220⁺CD43⁺IgM⁺IgD⁺ B cells, corresponding to Hardy fraction F (32) were over-represented in Cd81^{−/−} mice (Fig. 6A). These are the most mature B cells in the bone marrow and express high CD21 levels, similar to splenic marginal zone B cells (33). Stimulation of the BCR in these cells resulted in increased Ca²⁺ ion influx in Cd81^{−/−} cells compared with their wild-type counterparts (Fig. 6B, left panels) and stimulated them with LPS; once again, those derived from Cd81^{−/−} mice secreted significantly higher amounts of IgM compared with their wild-type counterparts (Fig. 6C).

Increased T-independent immune response in Cd81^{−/−} mice

The foregoing results demonstrated an ability of Cd81^{−/−} B cells to be hyperactivated upon BCR or LPS stimulation. The analysis of a large cohort of mice revealed that the serum levels of IgM, IgG₃ and IgG were not significantly different between wild-type or Cd81^{−/−} mice (Fig. 7A–C, respectively). However, when immunized with the T-independent antigens, TNP-LPS and TNP-ficoll, Cd81^{−/−} mice responded with an elevated primary TNP-specific IgM immune response, compared with wild-type mice (Fig. 7D and supplementary Figure S3 is available at International Immunology Online, respectively). The mice were boosted after the primary immune response subsided, and the analysis of the secondary immune response showed significantly elevated levels of IgM, IgG₃ and IgG anti-TNP antibodies in the serum of Cd81^{−/−} mice (Fig. 7D). We then purified splenic B cells from Cd81^{−/−} and from wild-type mice and adoptively transferred them to Rag^{−/−} mice (Fig. 7E). The adoptively transferred animals were reconstituted with B cells, but lacked T cells, as expected. Also, as expected, the reconstituted Cd81^{−/−} B cells expressed lower levels of CD19 than their wild-type counterparts (Fig. 7F, lower panels). The mice were immunized 7 days after the adoptive transfer with TNP-LPS, followed by analysis of TNP-specific IgM response. The mice reconstituted with Cd81^{−/−} B cells mounted a higher antigen-specific T-independent immune response (Fig. 7G), as was the case in the Cd81^{−/−} donor animals. These in vivo results are consistent with an intrinsic ability of Cd81^{−/−} B cells to overrespond to direct stimulation and they are consistent with all of our in vitro studies on these Cd81^{−/−} B cells.

Discussion

Our current study demonstrates that in the absence of CD81, B cells display a hyperactive phenotype in response to stimulation in vitro and in vivo. This phenotype was transferable to Rag^{−/−} host and was not dependent upon the CD81-deficient stromal environment. Based on these results, we propose that CD81 serves as a negative regulator of B cell activation.

CD81 was shown to associate with lipid rafts upon co-ligation of the BCR and the CD19/CD21 complex, whereas in the absence of CD81, these two complexes failed to partition into lipid rafts (34). This biochemical study pointed to a role of CD81 in amplifying and prolonging BCR signaling from lipid rafts via co-receptor CD19/CD21 complex.

Fig. 4. Expression of co-stimulatory molecules in resting and activated Cd81^{−/−} and wild-type B cells. (A) PBMC from Cd81^{−/−} and wild-type mice were stained with fluorochrome-conjugated anti-CD80, CD86 and CD69 antibodies and analyzed by flow cytometry. Mean fluorescent intensities of CD80, CD86 and CD69 staining in individual mice are plotted, median values are shown by horizontal lines; the difference in mean values are not statistically significant (N = 20). (B) Expression of CD86 and CD69 after overnight culturing of purified B cells in the presence of anti-IgM (12.5 μg ml^{−1}), LPS (10 μg ml^{−1}), TLR9 agonist CpG (ODN1826) at 5 μg ml^{−1} or IL-4 (10 ng ml^{−1}). Shaded and open histograms represent the expression of the respective markers in the unstimulated B cells and the stimulated cells, respectively. These data are representative of five independent experiments.
However, our current results do not validate this prediction (Figs 1–3 and 7).

The partnership of CD81 with CD19 was originally demonstrated in human B cells, where the two molecules co-precipitated each other (8). CD19 is expressed very early during B cell development at Hardy fraction B (35, 36, 55). However, the onset of CD81 expression during B cell development was not known. Our current analysis shows that the onset of CD19 expression coincides with that of CD81 during early B cell development (supplementary Figure S4 is available at International Immunology Online). Interestingly, three independently derived Cd81−/− mice have reduced CD19 expression (16–18). Therefore, it is likely that the expression of CD19 and CD81 are regulated at the early stage of B cell development during the initial assembly of the coreceptor complex. In support of this, our previous study showed that CD81 is involved in intracellular trafficking of CD19 to the cell surface; subsequently, we identified the structural domains within the CD81 molecule required for cell surface expression of CD19 (21).

Since the expression of CD81 and CD19 are so intimately linked, it is important to distinguish the individual contribution to the B cell hyperactivity associated with CD81 deficiency that we have observed here. Natural mutation of CD19 in human (37, 38) or engineered knockout mutations in mice (13, 39) result in profound deficiency in response to BCR activation. In human, the mutation of CD19 leads to reduced immune response (37, 38). Cd19−/− mice lack germinal centers and have a deficiency in affinity maturation of antibodies (40). In addition, Cd19−/− mice expressing human CD19 without the cytoplasmic signaling domain also display reduced immune responses (14). The original assessment of the function of CD19 by ligation with an antibody reported an inhibitory effect (41), later it was shown that this effect is dependent on the system used, as independent ligation of CD19 inhibited BCR-induced B cell activation (41, 42), whereas co-cross-linking of CD19 and the BCR was stimulatory (11, 42). In addition, a sustained increase in BCR-induced calcium influx in CD19-deficient B cells was reported (12, 14); however, these studies failed to
reflect increase in downstream signaling. Despite these discrepancies, overall CD19 is reported to enhance BCR-mediated intracellular signaling (11–15, 43). Therefore, reduced CD19 expression in Cd81−/− B cells would have been expected to lead to reduced ability to be activated. However, we show here that Cd81−/− B cells are hypersensitive. Hence, it is most likely that hyperresponsiveness of CD81-deficient B cells upon activation cannot be attributed per se to reduced CD19 levels.

Engagement of the BCR results in an increase in cytosolic-free calcium ion (27). Previously, Tsitsikov et al. (18) reported normal calcium influx in response to BCR ligation in Cd81−/− B cells. Here, we re-examined BCR-induced calcium response in a large cohort of Cd81−/− mice and consistently observed an increased influx of calcium ion compared with wild-type controls (Fig. 1). Another hallmark of early B cell activation is the phosphorylation of downstream kinases (44). Consistent with the increased Ca2+ influx, the phosphorylation of Syk, the proximal signaling kinase downstream of BCR and PLCγ2 that stabilizes B cell activation were increased in Cd81−/− (Fig. 2). Our result differs from that summarized without presentation of their data by Miyazaki et al. (17), claiming that BCR-induced calcium response is unaffected in Cd81-deficient B cells. Our data clearly demonstrate that lack of CD81 leads to enhanced early B cell activation events in response to stimulation of the BCR (Figs 1 and 2).

Fig. 6. The mature B cell subset (IgM+IgD+) is increased in the bone marrow of Cd81−/− mice. (A) Bone marrow cells were stained with fluorochrome-conjugated anti-B220, CD43, BP-1, IgM and IgD antibodies (32). Cells corresponding to fraction F (IgM+IgD+ are increased in Cd81−/− bone marrow. (B) Bone marrow cells were loaded with the calcium sensitive dye Indo-1 and stained with fluorochrome-conjugated IgM and IgD antibodies. Cells were stimulated with anti-IgM plus IgG (50 μg ml−1) and intracellular-free Ca2+ ion was measured by flow cytometry. IgM+IgD+ B cells in Cd81−/− (red) bone marrow showed an increased influx of Ca2+ ion upon BCR stimulation. (C) Increased antibody secretion from Cd81−/− IgM+IgD+ cells. Bone marrow cells were stained with fluorochrome-conjugated anti-IgM and anti-IgD antibodies and IgM+IgD+ cells were sorted (as shown in the left panels). Equal numbers of sorted cells from the Cd81−/− and wild-type bone marrow were cultured for 5 days in the presence of 1 μg ml−1 LPS (N = 3 for each group). IgM secretion measured from the spent media was significantly different (right panel).
Fig. 7. Increased immune response to a T-independent antigen in Cd81−/− mice. Basal serum IgM (A), IgG3 (B) and IgG (C) level in wild-type (blue) and Cd81−/− (red) mice, median values are shown by horizontal lines; the difference in mean values are not statistically significant (N = 18). (D) Wild-type (N = 6) and Cd81−/− (N = 6) mice were immunized intra-peritoneally with TNP–LPS (50 μg ml−1) and boosted 5 weeks after the initial immunization. Pre-immune and post-immune sera were collected and TNP-specific IgM (left), IgG3 (middle) and total IgG (right) were measured by ELISA. Plotted is the response of wild-type (blue) and Cd81−/− (red) mice as mean ± SD. Significance of differences in mean values for the indicated time points are shown by asterisk (*P < 0.05, **P < 0.001 and ***P < 0.0001). (E) Adoptive transfer of B cells. B cells were purified from wild-type or the Cd81−/− spleen based on B220 staining. A total of 20 × 10^6 B cells were injected to sub-lethally irradiated
Past reports on the proliferative responses of Cd81−/− B cells to different stimuli resulted in conflicting results. For example, Miyazaki et al. (17) reported increased proliferation in response to stimulation by LPS but decreased proliferation in response to stimulation by immobilized anti-IgM. Whereas, Tsitsikov et al. (18) showed normal proliferation using soluble anti-IgM reported. Our re-analysis showed a mild increase in proliferation of Cd81−/− B cells in response to BCR stimulation (Fig. 3). The increased proliferative capacity of Cd81−/− B cells was even more apparent in response to activation of the TLR4 pathway by LPS (Fig. 3). We confirmed this increase in proliferation by measuring Ki67 expression in cycling cells (Fig. 3B). We further observed that activation of TLR4 pathway via LPS led to a moderate increase in intracellular signaling in Cd81−/− B cells (supplementary Figure S2 is available at International Immunology Online).

B cell activation is associated with the up-regulation of several co-stimulatory molecules. Analysis of the levels of CD80, CD86 and CD69 in resting and activated B cells showed no difference in their expression between Cd81−/− and wild-type cells (Fig. 4). Thus, once activated, Cd81−/− B cells equally express the co-stimulatory molecules required for interaction with T cells. However, our previous studies have demonstrated that cognate interaction between Cd81−/− B and T cells result in impaired Tt2 immune responses in vitro and in vivo (45, 46).

Previous analyses of humoral response of the three Cd81−/− lines differed considerably in the antigens and schedules used (16–18). To focus specifically on the B cell response in vivo, we used T-independent antigens. In agreement with the in vitro data (Figs 1–3, 5), we found that Cd81−/− mice mounted stronger immune responses, both to primary (IgM) and to secondary (IgM, IgG3 and IgG) booster vaccinations (Fig. 7D, supplementary Figure S3 is available at International Immunology Online). When splenic B cells were adoptively transferred to Rag1−/− mice, those receiving Cd81−/− cells (Fig. 7F) also showed enhanced immune response to TNP–LPS (Fig. 7G).

CD81 is widely expressed; therefore, multiple cellular interactions might influence the specific cell type analyzed. It was previously shown that CD81 in stromal cells was required for the development of T cells in fetal organ tissue culture (47). We therefore tested whether the hyperactive Cd81−/− B cell phenotype could also be influenced by the Cd81−/− stromal environment during B cell development. We transferred bone marrow cells into Rag1−/− recipients and analyzed the donor-derived B cells (Fig. 5A). Functionally, these B cells exhibited the same hyperactive phenotype in response to stimulation, including increased proliferation (Fig. 5C) and increased IgM secretion (Fig. 5D), as did primary Cd81−/− B cells. These results provide evidence that a Cd81−/− deficient stromal environment does not influence the Cd81−/− B cell phenotype.

Altered B cell activation could be associated with B cell developmental abnormalities (48). However, analysis of the lymphoid compartments in Cd81−/− primary mice and in the chimeric Cd81−/−/Rag1−/− mice generated by bone marrow transplantation did not show differences in B cell subsets in the spleen and lymph nodes (supplementary Figure S1B and C is available at International Immunology Online). Interestingly, we noticed an over-representation of IgM+IgD+ B cells in the bone marrow of Cd81−/− mice (Fig. 6A). IgM+IgD+ B cells (Hardy fraction F) (32) represent the mature B cell subset in the bone marrow. These cells reside in the perisinusoidal space of the bone marrow and participate in T-dependent humoral immune responses, providing the first line of defense against blood-borne pathogens (33). However, unlike their counterparts in the follicular niche, these cells are capable of being activated in situ by blood-borne microbes in a T-independent manner to generate specific IgM antibodies. These cells also represent a significant pool of B cells in the body (33). This IgM+IgD+ bone marrow population in Cd81−/− mice was hyperresponsive to BCR stimulation as evident by increased Ca2+ influx (Fig. 6B) and secreted higher amounts of IgM upon polyclonal stimulation with LPS (Fig. 6C). In contrast, mice lacking the negative regulators of B cell activation, i.e., Aiolos, the zinc finger DNA-binding protein (49), the cell surface molecules CD22 (50–52) and CD72 (53) have a common B cell maturation defect. They have fewer mature B cells in the bone marrow but normal B cell subsets in the secondary lymphoid organs. It was inferred that the lack of mature B cells in the bone marrow is linked to the lack of negative regulation of B cell activation (31). However, the situation is reversed in Cd81−/− mice, which exhibit a hyperactive B cell phenotype and have increased representation of IgM+IgD+ cells in the bone marrow. Thus, Cd81−/− mice provide an example where B cell are hyperactive although there is increased generation of IgM+IgD+ cells, which play a major role in T-independent B cell response.

Based on the results presented here, we conclude that one of the physiological roles of CD81 is to serve as a negative regulator of B cell activation. Most of the B cell-specific cell surface molecule known to inhibit B cell activation contains immunoreceptor tyrosine-based inhibition motifs (ITIMs). In general, B cells that lack molecules containing ITIM, including CD22, FcyRII and FcR-B, are hyperactivate in response to BCR stimulation but respond normally to LPS (54). Therefore, these molecules primarily modify BCR signaling. Since, Cd81 lacks ITIM and our results show that Cd81-deficient B cells are hyperactive in response to stimulation either via BCR or TLR4 and exhibit enhanced downstream signaling events (Figs 1–3 and supplementary Figure S2 is available at International Immunology Online), we hypothesize that CD81 may exert its effect at the cell membrane.

Supplementary data
Supplementary Figures S1–S4 and Table S1 are available at International Immunology Online.
Role of CD81 in B cell of activation

Funding

Leukemia and Lymphoma Society (7751).

Acknowledgements

We thank Ron Levy and Leonore Herzenberg for their continuous advice in this study and to Peter Wilker for sharing his expertise of B cell proliferation assay. The authors declare that they have no competing financial interests.

Abbreviations

BCR B cell receptor
CFSE carboxyfluorescein succinimidyl ester
Erk extracellular signal-regulated kinase
ITIM immunoreceptor tyrosine-based inhibition motif
NF-kB nuclear factor-kappa B
PLCγ2 phospholipase gamma 2
SyK spleen tyrosine kinase
TEM tetraspanin-enriched microdomain
TLR toll like receptor
TNP 2,4,6, trinitrophenol

References

