problem the relevance of which goes far beyond TOS itself, such as: the response of the human body to xenobiotics, the susceptibility mechanisms involved, the importance of follow-up on a cohort of a unique disease the evolution of which is unknown, and of course, an excellent example of how to determine causality in these type of intoxications. Despite that, even today, opinions differ about the aetiology of TOS as can be seen on the Web. The evidence collected on this disease under multidisciplinary and international collaborative work, carried out jointly by the ISCIII and WHO, has resulted in a model to be taken into account for other conditions and in an example of high quality science applied to a unique, low prevalence, environment related disease.

Without any doubt, the readers of this book will be able to choose the chapters that may be of their interest, having as background the historical context and the current status of the study on a rare disease.

References

MANUEL POSADA
doi:10.1093/ije/dyi051


Measurement error often occurs in study data, yet is frequently ignored. This can lead to biased results, and so the evaluation of measurement error is of major importance. Statistical Evaluation of Measurement Errors is a book designed to describe the multitude of methods available. A relatively short book of 216 pages, it is divided into five chapters. The first introduces basic concepts, including subsections on precision, bias and accuracy, and reproducibility and generalizability. Sources of variation in measurements are explored in chapter two. Chapters three and four, nominated by the author as the ‘central chapters’, explore the design and analysis of method comparison studies, with chapter three dedicated to paired observations and chapter four dealing with more informative designs. The final chapter describes methods for categorical data, with an emphasis on the special case of binary data.

Each topic covered is illustrated with an example, with the complexity of the examples increasing as the reader progresses through the book. The first chapter gives simple examples of estimating the accuracy of a set of kitchen scales and measuring the lengths of pieces of string. Later chapters discuss real life scenarios and include examples available in the published literature. As measurement error is an issue in studies across the sciences, examples are provided not only from epidemiology, but also from other disciplines including psychology, chemistry, and biology.

Obviously, with such a slim volume it is impossible to go into great depth on all relevant topics. An example of a topic that is briefly covered is sample size and power calculations. This is well recognized by the author, and where a topic is not covered in depth the reader is directed to other sources, both by reference in the text and by additional entries in the bibliography at the end. There is also little consideration of measurement error in ordinal variables, as chapter five deals mainly with binary data, but again the reader is directed towards further reading.

The focus of the main text is on the mathematical background to the statistical evaluation of measurement errors. Simple derivations of formulae are provided, and where this is too complex and outside the scope of the book, the reader is directed to external sources. A note of caution is required here. The reader should be wary of printing errors. While the majority occur in the text, and hence will cause little difficulty for the reader, there are occasional errors in formulae. However, when errors in formulae do occur they are obvious and should not cause a great problem for the reader.

The main text alone would be useful for someone trying to understand the theory behind evaluating measurement error, but for someone interested in evaluating measurement error in practice appendices are provided containing sample code for model fitting in EQS, Stata, and Mplus. These appendices are a useful addition and make this book a comprehensive aid to anyone wishing to evaluate measurement error in a study.

Overall, this is a useful reference book, and the range of topics covered is wide. It will be an invaluable tool for anyone designing a study, regardless of whether it is in epidemiology or another science.

ZOE FEWELL
doi:10.1093/ije/dyi052


In this book, the obesity epidemic in the United States is examined from a unique perspective. The epidemic itself is put ‘on trial’, with the author serving as ‘an advocate for truth’ and the readers serving as the jury. The book contains 18 chapters divided into three sections that examine the science, culture, and politics surrounding obesity in the American context. This is the first book on the topic by this author, who is a professor of law and also the author of a weekly newspaper opinion column. The intended audience for the book is presumably laypersons.

As suggested by the title, the topic of this book goes against the mainstream view of professionals who work in obesity-related fields. The central idea is that a person with a heavier-than-average body weight faces a minimal elevation of health risks compared with a person with an average body weight. The idea is then developed that the emphasis placed on the problem of excess weight among Americans by the government, researchers, physicians, and industry is thus largely unwarranted and, furthermore, often detrimental to people’s health. Written in a breezy and rambling style, the book is fairly easy to read despite the tendency towards repetition. It has an extensive notes section that contains references and further commentary on the references by the author.