Neighbourhood food environment and area deprivation: spatial accessibility to grocery stores selling fresh fruit and vegetables in urban and rural settings

Dianna M Smith,1 Steven Cummins,1* Mathew Taylor,2 John Dawson,2,3,4 David Marshall,2 Leigh Sparks3 and Annie S Anderson5

Background The ‘deprivation amplification’ hypothesis suggests that residents of deprived neighbourhoods have universally poorer access to high-quality food environments, which in turn contributes to the development of spatial inequalities in diet and diet-related chronic disease. This paper presents results from a study that quantified access to grocery stores selling fresh fruit and vegetables in four environmental settings in Scotland, UK.

Methods Spatial accessibility, as measured by network travel times, to 457 grocery stores located in 205 neighbourhoods in four environmental settings (island, rural, small town and urban) in Scotland was calculated using Geographical Information Systems. The distribution of accessibility by neighbourhood deprivation in each of these four settings was investigated.

Results Overall, the most deprived neighbourhoods had the best access to grocery stores and grocery stores selling fresh produce. Stratified analysis by environmental setting suggests that the least deprived compared with the most deprived urban neighbourhoods have greater accessibility to grocery stores than their counterparts in island, rural and small town locations. Access to fresh produce is better in more deprived compared with less deprived urban and small town neighbourhoods, but poorest in the most affluent island communities with mixed results for rural settings.

Conclusions The results presented here suggest that the assumption of a universal ‘deprivation amplification’ hypothesis in studies of the neighbourhood food environment may be misguided. Associations between neighbourhood deprivation and grocery store accessibility vary by environmental setting. Theories and policies aimed at understanding and rectifying spatial inequalities in the distribution

1 Healthy Environments Research Programme, Department of Geography, Queen Mary University of London, London, UK.
2 University of Edinburgh Business School, Edinburgh, UK.
3 Institute for Retail Studies, University of Stirling, Stirling, UK.
4 ESADE, Barcelona, Spain.
5 Centre for Public Health Nutrition Research, Ninewells Medical School, University of Dundee, Dundee, UK.

* Corresponding author. Healthy Environments Research Programme, Department of Geography, Queen Mary University of London, Mile End Road, London E1 4NS, UK. E-mail: s.c.j.cummins@qmul.ac.uk
Introduction

Studies investigating the role of the neighbourhood social and physical environment in the development of poor diet have become common in recent years. Research has found that food consumption patterns vary between neighbourhoods and that living in a disadvantaged neighbourhood is independently associated with a poor diet. Much of this work has been situated within an ‘ecological’ public health perspective whereby the neighbourhood food environments to which individuals are exposed have been hypothesized to exert an independent effect on diet and diet-related chronic disease through influencing food purchase and consumption patterns. It has been hypothesized that a process of ‘deprivation amplification’ might be at work, where residents of the most deprived communities are exposed to the lowest quality neighbourhood food environments.

Much work has been done in the USA on how local availability of the components of a healthy diet may be an important mediating factor between neighbourhood deprivation and diet quality. Healthy foods have been found to be less readily available in poorer compared with more affluent areas and proximity to certain categories of food store have been positively associated with individual diet. The presence of a neighbourhood supermarket has been particularly associated with an increased consumption of fresh fruits and vegetables. A number of studies have documented spatial inequalities in access to these stores, with fewer supermarkets and greater numbers of small grocery stores available to residents of more disadvantaged neighbourhoods. Spatial inequalities in accessibility suggest that adherence to recommended intakes of fresh fruits and vegetables may be harder for residents of more disadvantaged neighbourhoods.

However, recent research undertaken in the UK has been more equivocal. Some studies have found no independent association between food retail provision, individual diet and fruit and vegetable intake, and minimal differences between deprived and affluent areas in the availability of a ‘modest but adequate’ diet. Conversely, other studies have uncovered poorer access to supermarkets in deprived areas, as well as increasing inequalities in grocery store access. This conflicting evidence also extends to recent qualitative work. In one study in England, few low-income consumers reported any problems in accessing supermarkets, despite transport difficulties, or perceived problems in the choice of fruit and vegetables, but these findings are balanced by evidence of a complex relationship between perceived accessibility constraints and transport options at the household level. Two before-and-after studies have attempted to evaluate the effect on fruit and vegetable intake of the introduction of food supermarkets in deprived urban neighbourhoods, again with conflicting results. One study in Leeds, England, reported improvements in fruit and vegetable consumption, with the largest impact seen amongst those with the lowest baseline intakes. The second study, undertaken in Glasgow, Scotland, found little evidence for any effect on fruit and vegetable consumption patterns. Similar lack of associations from observational studies have been found in Australia and New Zealand.

The lack of agreement in findings within the UK may be due to the pragmatic case–study approach of most studies, which focus on small geographic areas such as one city or community and have a tendency to document the experience of deprived urban neighbourhoods. Such an approach, though valid, does not allow the comparison of associations between neighbourhood deprivation and food accessibility for the full range of urban and rural settings. In addition, researchers have also tended to characterize neighbourhood food environment exposures purely on the basis of store location rather than directly investigate the availability of healthy items ‘within’ these stores. In this paper, we use a Geographical Information Systems (GIS) approach to; first, investigate how spatial accessibility to grocery stores, as measured by travel times using motorized transportation along the road network, varies by neighbourhood deprivation in a range of urban and rural settings across Scotland; and secondly, investigate whether spatial accessibility to fresh fruit and vegetables varies within these settings and varies by neighbourhood deprivation.

Data and methods

Selection of study sites

Data on the availability of fruit and vegetables were collected in nine ‘sentinel’ sites stratified by deprivation and urban/rural status across Scotland. These locations were chosen to represent the full range of environmental settings across the country, and included islands, rural areas, smaller towns and urban centres. Sentinel sites were initially selected by stratifying all available data zones by...
the Scottish Executive’s Urban–Rural Classification Scheme (SEUR). Data zones are the core small-area statistical geography used in Scotland. There are currently 6505 data zones, with a mean population of 778 (range 500–1000).

To select sentinel sites, each of the 6505 data zones was grouped into one of three environments; urban (SEUR 1 and 2), small town (SEUR 3 and 4) or rural (SEUR 5 and 6). Data zones within each of these environments were then divided into deciles of deprivation using the 2006 Scottish Index of Multiple Deprivation (SIMD), an area-based measure of relative deprivation. The SIMD is a publicly available continuous measure of compound social and material deprivation calculated using data such as current income, employment, health, education and housing. Within the top and bottom deciles of each of the three environments, one data zone was randomly selected as the nucleus of the sentinel site. For each of the six nuclei, additional data zones were added to build an overall sentinel site consisting of contiguous data zones that corresponded to a recognized community. Thus, six sentinel sites were initially constructed; urban affluent (Broughty Ferry, Dundee), urban deprived (Scotstoun/Drumchapel, Glasgow City), small town affluent (Ellon, Aberdeenshire), small town deprived (Kilbirnie, North Ayrshire), rural affluent (Haddington, East Lothian) and rural deprived (Dornoch, The Highlands). However, this process did not select island communities (SEUR rural) and, as expected, the numbers of grocery stores available in some settings were too small to conduct meaningful analyses. We therefore purposively selected four further sentinel sites to enhance coverage of the range of settings and boost small numbers of observations. Additional sites selected, on the basis of SEUR classifications, were Eilean Siar and Orkney (islands), Cupar, Fife (small town affluent) and Inverness (urban mixed). In total, 205 data zones were selected.

The final sample of study sites ensured coverage of the four main environmental settings in Scotland: island, rural, small town and urban (Table 1).

Table 1 provides an overview of selected characteristics for each sentinel site, as well as showing the distribution of data zones by income quintile and area type/sentinel site. Overall, deprivation is concentrated in the urban areas, although some of the most deprived data zones (in Q5) are located in Kilbirnie. The majority of data zones in rural areas were classified in one of the three least deprived quintiles (Q1–Q3). Island areas had a fairly even distribution of data zones between Q2–Q4, and the small town areas had similar numbers of data zones within each of the five quintiles. Within the four types of environment, the more deprived sentinels had relatively lower levels of household car ownership.

Census of food retail stores within study sites

In order to collect data on the availability of fresh fruit and vegetables, we first required data on grocery store provision within the selected study sentinel sites. There is no single comprehensive directory of food stores and other outlets that sell food in Scotland thus data were combined from a variety of secondary sources. Data on the street address and postcode of grocery stores selling food for home consumption (excluding takeaway/fast-food and coffee shop outlets) were initially obtained from industry (Institute of Grocery Distribution) and commercial sources (Marketscan and Catalist). These data were supplemented using the company websites of the major Scottish multiple retailers (Tesco, Somerfield, Asda, Sainsbury and Morrisons), discounters (Aldi, Lidl) and freezer centres (Iceland, Farmfoods), online retail directories (Yell.com) and websites of symbol groups (Spar, Londis, Budgens, Costcutter). In addition, data from local authority registers

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Island mixed/deprived: Eilean Siar</td>
<td>18683</td>
<td>30.2</td>
<td>25</td>
<td>0 3 12 10 0</td>
</tr>
<tr>
<td>Island mixed: Orkney</td>
<td>12365</td>
<td>20.5</td>
<td>17</td>
<td>5 10 2 0 0</td>
</tr>
<tr>
<td>Rural affluent: Haddington</td>
<td>20816</td>
<td>19.2</td>
<td>26</td>
<td>9 9 7 1 0</td>
</tr>
<tr>
<td>Rural deprived: Dornoch</td>
<td>6679</td>
<td>20.7</td>
<td>9</td>
<td>0 4 3 2 0</td>
</tr>
<tr>
<td>Small town deprived: Kilbirnie</td>
<td>13223</td>
<td>30.4</td>
<td>17</td>
<td>3 3 2 5 4</td>
</tr>
<tr>
<td>Small town affluent: Ellon & Cupar</td>
<td>7622</td>
<td>22.2</td>
<td>10</td>
<td>4 2 3 1 0</td>
</tr>
<tr>
<td>Urban affluent: Broughty Ferry</td>
<td>13535</td>
<td>26.8</td>
<td>17</td>
<td>8 3 3 1 2</td>
</tr>
<tr>
<td>Urban deprived: Scotstoun/Drumchapel</td>
<td>41992</td>
<td>53.9</td>
<td>51</td>
<td>2 2 5 12 30</td>
</tr>
<tr>
<td>Urban mixed: Inverness</td>
<td>25748</td>
<td>33.1</td>
<td>33</td>
<td>10 5 4 9 5</td>
</tr>
</tbody>
</table>

a1 = least deprived; 5 = most deprived.
(The Public Register of Food Premises) were also obtained. Data were combined, de-duplicated and cleaned on the basis of matching address and postcodes. Postcode validity was ascertained by joining the retail data with Ordnance Survey Code-Point information and identifying which postcodes could not be grid-referenced.

In total, 466 unique retail facilities were identified, including both permanent and mobile/non-permanent locations such as farmers’ market stalls. Of these locations, 22 had a missing, incorrect or incomplete postcode. Postcode errors were resolved by using the Royal Mail online address/postcode checker and electronic searches of company websites and directories for 13 of the 22 uncertain locations. The final data set of geo-coded retail food sources for analysis included 98.1% ($n=457$) of the initially identified food retail facilities.

Data on availability of fresh fruit and vegetable within stores

Data on the availability (yes/no) of a range of fresh fruit and vegetables were obtained from in-store visits by trained surveyors to all the identified food outlets in the food retail census during two periods October/November 2005 and February/March 2006. Information on the 12 fresh produce items were collected using the Healthy Eating Indicator Shopping Basket (HEISB) tool.35 Items included in this study were: apples, bananas, white grapes, oranges, potatoes, onions, carrots, broccoli, round lettuce, cucumbers, red peppers and tomatoes.

Calculating spatial accessibility

Travel time to the nearest store was calculated in ArcGIS 9.3 using the network analyst extension. Access is measured in travel time (minutes) by motorized transport between each origin (the population-weighted centroid of each of the 205 data zones in the study) and the closest store (based on x and y coordinates for that store). The use of a road-based network distance rather than straight-line distance between the centroids and stores is essential for obtaining the most realistic accurate results.36 The road network was represented by a hierarchy of road types that affected the speed of vehicle travel, with the largest roads (here, A-roads) being the fastest option.

Population-weighted centroids by data zone are not available for Scotland, so were created by identifying all of the output areas within a given data zone and obtaining the ‘master postcode’ (MPC) for each output area (the most populous postcode in that output area). The x and y coordinates of all the MPCs for every output area in each data zone was then obtained and the MPCs were weighted by their output area population. The MPC for the most populous output area within a data zone therefore has the highest weight. The mean of the x and y coordinates from all of the output areas within a data zone were then calculated—this is the population-weighted centroid for that data zone.

In a small number of cases (4.4%, $n=12$), the population-weighted centroids fell outside of data zone boundaries, because data zones were groups of islands or coastal areas surrounding an inlet or cove. In these instances, we moved each centroid to the MPC coordinates that were closest to the projected location. Following the initial analysis, 0.74% ($n=2$) of the origins failed to locate a store. We were able to manually locate a store for each of these two centroids and estimate the travel time along local roads within a distance of $+/-5$ metres, giving us 100% coverage of all possible travel time observations.

First, the shortest travel time from each population-weighted centroid to any store was identified. Secondly, in order to better understand community access to the fresh fruit and vegetables, we measured vehicle travel time to the nearest store and nearest ‘large’ store that stocked any of the defined fresh produce. Travel times to ‘large’ stores were calculated as they offer the greatest choice and availability of fresh produce items.33 Large stores were defined as outlets with a floor space in excess of 15 000 square feet. Finally, we calculated travel times to the nearest stores with three categories of availability for the 12 fresh produce items: 1–4 items only, 5–8 items only and 9–12 items only.

Analysis

In order to investigate whether travel times to each of the specified destinations varied by neighbourhood deprivation, the 205 data zones within the sentinel sites were ranked and categorized into quintiles of income deprivation using the income domain of the 2006 SIMD. Travel times were not normally distributed and thus required the use of non-parametric tests to identify the magnitude of relationships between income deprivation and store accessibility by car. Fifteen origins in the island sentinel sites did not have road access to a large store selling produce. These centroids were excluded from the analysis. The median travel time to each store was calculated and Spearman’s rank order correlations were undertaken to test whether associations between quintiles of neighbourhood deprivation and median travel time to stores existed. Travel times to the nearest stores with increasing availability of fresh fruit and vegetables (1–4 items; 5–8 items; 9–12 items) were also analysed in this way. Results are displayed with sentinel sites stratified into the four environmental settings: island, rural, small town and urban.

Results

Overall, median travel time to the nearest store ($P=0.001$), nearest store with fresh produce
(P < 0.000) and nearest large store with fresh produce (P = 0.056) varied by neighbourhood deprivation. Travel times to stores were shorter in the most deprived (Q5) compared with least deprived (Q1) data zones (Table 2). When comparing the travel times for the entire sample, the differences between income quintiles were small for any single type of store.

Stratified analyses (Table 2) indicate that the above relationships hold true for urban settings, with median travel times to nearest store (P = 0.006) and nearest store with produce (P < 0.000) varying by neighbourhood deprivation. Residents of deprived urban neighbourhoods thus have better access to food stores and fresh produce than their more affluent counterparts. For rural settings, the reverse is true. Median travel times to the nearest store and nearest store with fresh produce were longer in the more deprived compared with the least deprived neighbourhoods, with a correlation coefficient of 0.358 for large stores in rural settings (P = 0.035).

The median travel times to the nearest stores and the nearest stores with produce were greatest in the most affluent income quintiles in both island and small town settings. For all settings, large stores selling fresh produce were furthest away within each quintile of deprivation. Absolute differences in median travel times to large stores compared with nearest store and nearest small store selling fresh produce were substantial across quintiles of deprivation.

Median travel times to stores selling 1–4 (P < 0.000) and 5–8 (P < 0.000) fresh produce items varied by neighbourhood deprivation with travel times shorter in the most deprived compared with the least deprived neighbourhoods (Table 3). This relationship, though in the same direction, was weaker for stores selling 9–12 fresh produce items (P = 0.488). Shops selling 9–12 fresh produce items were closer than stores selling fewer fresh produce items in Q1–Q3. Stores selling 5–8 items had the lowest travel times for Q4 and shops selling only 1–4 items had the lowest median travel times for Q5.

Table 2: Relationship between SEUR category, neighbourhood income deprivation and median travel time to nearest store

<table>
<thead>
<tr>
<th>SEUR category</th>
<th>Store type</th>
<th>Median travel time (minutes)</th>
<th>Median travel time (minutes) by 2006 income quintile*</th>
<th>Spearman’s rank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Median travel time (minutes)</td>
<td>Q1 Q2 Q3 Q4 Q5</td>
<td>p</td>
</tr>
<tr>
<td>All</td>
<td>Nearest store (205)</td>
<td>7.7 (6.9–9.0)</td>
<td>11.7 9.0 5.8 7.7 6.4</td>
<td>-0.237</td>
</tr>
<tr>
<td></td>
<td>Nearest store with produce (205)</td>
<td>9.0 (7.6–10.4)</td>
<td>14.3 10.4 6.6 10.2 7.5</td>
<td>-0.271</td>
</tr>
<tr>
<td></td>
<td>Nearest large store with produce (187)</td>
<td>37.7 (32.1–40.8)</td>
<td>48.3 43.4 37.3 39.6 37.2</td>
<td>-0.140</td>
</tr>
<tr>
<td>Island</td>
<td>Nearest store (42)</td>
<td>11.8 (8.5–15.8)</td>
<td>19.1 10.4 7.7 16.8 N/A</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>Nearest store with produce (42)</td>
<td>12.9 (8.6–17.8)</td>
<td>34.5 10.4 7.9 16.8 N/A</td>
<td>-0.027</td>
</tr>
<tr>
<td></td>
<td>Nearest large store with produce (27)</td>
<td>32.1 (14.1–62.9)</td>
<td>91.7 45.7 20.3 100.7 N/A</td>
<td>0.063</td>
</tr>
<tr>
<td>Rural</td>
<td>Nearest store (35)</td>
<td>7.7 (3.8–9.6)</td>
<td>9.0 7.4 5.6 26.4 N/A</td>
<td>-0.050</td>
</tr>
<tr>
<td></td>
<td>Nearest store with produce (35)</td>
<td>9.0 (6.1–12.3)</td>
<td>9.4 11.9 6.8 26.4 N/A</td>
<td>-0.072</td>
</tr>
<tr>
<td></td>
<td>Nearest large store with produce (34)</td>
<td>45.3 (24.9–56.1)</td>
<td>53.1 59.0 67.4 182.1 N/A</td>
<td>0.358</td>
</tr>
<tr>
<td>Small town</td>
<td>Nearest store (27)</td>
<td>9.0 (6.9–11.6)</td>
<td>14.1 9.0 5.8 8.9 10.1</td>
<td>-0.184</td>
</tr>
<tr>
<td></td>
<td>Nearest store with produce (27)</td>
<td>9.2 (7.0–14.2)</td>
<td>14.2 10.8 5.8 10.1 10.1</td>
<td>-0.183</td>
</tr>
<tr>
<td></td>
<td>Nearest large store with produce (27)</td>
<td>51.1 (37.0–63.3)</td>
<td>20.9 26.3 13.7 22.0 30.5</td>
<td>0.121</td>
</tr>
<tr>
<td>Urban</td>
<td>Nearest store (101)</td>
<td>6.4 (4.8–7.7)</td>
<td>9.8 8.2 5.6 5.5 5.1</td>
<td>-0.270</td>
</tr>
<tr>
<td></td>
<td>Nearest store with produce (101)</td>
<td>7.7 (6.4–9.9)</td>
<td>15.2 9.9 6.4 6.8 6.5</td>
<td>-0.355</td>
</tr>
<tr>
<td></td>
<td>Nearest large store with produce (99)</td>
<td>33.3 (29.6–39.1)</td>
<td>51.6 29.3 26.3 31.3 37.2</td>
<td>-0.141</td>
</tr>
</tbody>
</table>

*1 = least deprived; 5 = most deprived.
CI = confidence interval.
N/A = not applicable.
In island settings, median travel times to stores selling 5–8 items were greater in the least deprived compared with the most deprived neighbourhoods \((P = 0.034)\). For urban settings, median travel times to all store categories were lower in the most deprived compared with the least deprived (1–4, \(P < 0.000\); 5–8, \(P = 0.001\); 9–12, \(P = 0.155\)). For rural settings, stores selling any number of fresh produce items were further away in the most deprived compared to least deprived neighbourhoods. Median travel times to rural stores selling 9–12 fresh produce items were more similar between income quintiles compared with other stores. Finally, residents of the most income deprived neighbourhoods in small town settings had a shorter journey to stores selling 5–8 produce items compared with their least deprived counterparts \((P = 0.102)\). Stores selling 9–12 items were closest in Q1–Q3; stores selling 5–8 items were closest in Q4 and Q5.

In general, though patterns were clear at the extremes of income deprivation for both travel times to all grocery stores and travel times to stores selling fresh produce, the relationships outlined above were highly non-linear in nature.

Discussion

The results reported here demonstrate that, in general, contrary to the ‘deprivation amplification’ hypothesis, residents of the most deprived neighbourhoods have shorter travel times to grocery stores than residents of the least deprived communities. However, stratifying this analysis by environmental setting suggests that this relationship may not necessarily be universally true, but depend on the type of environment under investigation.

In contrast to studies in the USA which suggest that residents of deprived urban neighbourhoods are at a locational disadvantage,\(^7,17\) here residents of the most deprived urban areas had shorter median travel times to the nearest grocery store compared with residents of the least deprived. In comparison to UK work, this study adds further weight to the suggestion that ‘food deserts’ may not exist in urban areas in the UK.\(^19,20,37\) However, poorer spatial accessibility to grocery stores in deprived neighbourhoods may well exist in island, rural and small town settings.

There has been no UK work directly comparing access to fresh fruit and vegetables across a range of environmental settings. In this study, grocery stores selling fresh produce are closer to residents of the most deprived compared to the least deprived neighbourhoods for every ‘availability’ category. In urban settings, median travel times were significantly shorter for all availability categories compared with the least deprived places but these findings are not supported by earlier work undertaken in the USA\(^8\) and Australia,\(^28,29\) where no differences in neighbourhood densities of grocery stores selling fruit and
vegetables were found. For each deprivation quintile, stores selling the full range of fresh produce items are closer than those selling the least. For island, rural and small town settings the locational disadvantage was more mixed, though stores with the greatest availability were further away in the most deprived neighbourhoods in island and small town settings. Within deprivation quintiles, stores with the greatest number of available items were closer than stores with the fewest. Such patterns may reflect the differing social, economic and planning histories of those places as well as stage of economic development. As such, in order to have confidence in these findings, replication of results for island, rural and small town settings are required.

This study is limited in that, for practical reasons, a relatively small, but diverse, number of communities was sampled across Scotland. However, within each of those communities a census of stores was undertaken and all identified food stores surveyed. This is a major improvement on existing work, which relies on geographically limited samples in one setting, although we were unable to sample stores outside of the study area to control for any boundary/edge effects. We also have no information on residents shopping behaviour, which may condition the use of local shopping facilities. We also assume residents patronize the nearest store and proximity represents at least a measure of access. However, other socio-relational and socio-economic factors may also be important such as income, time, social meaning and acceptability, quality, transport cost and availability and mobility. Finally, travel times were calculated via the road system. This assumes that residents have access to motorized transport. However, access to a car to shop varies by setting and by area deprivation (as illustrated by relatively low rates of household car ownership in Scotstoun/Drumchapel), increasing travel times and thus reducing relative access for those groups without cars. Public transport is a more realistic option for car-less residents in the urban areas; however, the lack of access to a car for shopping could greatly increase the travel times to shops in the more sparsely populated areas where public transport options may be limited. However, a recent study in the Western Isles found that 91.4% of respondents used a car to access food stores despite car-ownership limited to 75% in the same group. This indicates that use of motorized transport in such settings is almost universal. Although walking times were not calculated for this analysis, the drive times provided a good indication of relative accessibility between area types and income deprivation quintiles, which is the primary objective of this paper.

Although every effort was made to ensure a diverse sample of data zones within each type of area, nearly all of the most deprived data zones (Q5) were located in urban areas. This is representative of the Scottish social context, where the greatest levels of income deprivation are concentrated in urban areas with greater affluence in less populated regions.

Despite these limitations, the data presented here suggest that even though the most disadvantaged urban neighbourhoods have better access to stores selling a range of fresh produce, residents of deprived neighbourhoods in rural and remote areas may face problems accessing fresh fruit and vegetables. Current policy initiatives such as the new ‘Healthy Start’ welfare foods scheme provide vouchers that can only be used for fresh, rather than canned, frozen and dried, fruits and vegetables, underlining the importance of good access to these commodities for the poorest families. In Scotland, polices and interventions targeted at more rural and remote communities may help reduce spatial inequalities in diet and diet-related chronic diseases.

Funding

The Food Standards Agency (Scotland) as part of the project ‘Accessing Healthy Food: A National Assessment and Sentinel Mapping Study of Food Retailing in Scotland’ (Grant Ref: S04005); the award of Philip Leverhulme Prize to S.C. (to D.S.); and National Institute of Health Research Fellowship (to S.C.).

Conflict of interest: None declared.

References

6. MacIntyre S. Deprivation amplification revisited; or, is it always true that poorer places have poorer access to resources for healthy diets and physical activity? *Int J Behav Nutr Phys Act* 2007;4.
7. Zenk SN, Schulz AJ, Israel BA, James SA, Bao SM, Wilson ML. Neighborhood racial composition, neighborhood poverty, and the spatial accessibility of...