Commentary: The epigenotype—a dynamic network view of development

Eva Jablonka and Ehud Lamm*

The Cohn Institute for the History and Philosophy of Science and Ideas, Tel-Aviv University, Tel Aviv, Israel

*Corresponding author. The Cohn Institute for the History and Philosophy of Science and Ideas, Tel-Aviv University, Tel Aviv 69978, Israel. E-mail: ehudlamm@post.tau.ac.il

Accepted 28 March 2011

During the late 1930s and the early 1940s, a particularly productive period in his scientific life, Conrad Hal Waddington (1905–75) started to construct a new synthesis between genetics, embryology and evolution. In the 4 years between 1939 and 1943, before he became involved in military activity during the Second World War, he published two substantial books and several seminal papers, all of which were explicitly geared towards constructing of an integrated view of biology. ‘The Epigenotype’, published in the semi-popular science journal Endeavour, is one of these papers. In it, Waddington presented and developed some of the ideas that he had already discussed in his books, and also defined, albeit informally, a new domain of research, epigenetics—the study of the causal mechanisms intervening between the genotype and the phenotype.

Today, epigenetics is a very broad field of study, covering many aspects of biology, including morphogenesis, cell heredity, transgenerational epigenetic inheritance, and the evo-devo approach to evolution that Waddington investigated though his genetic assimilation experiments. In this commentary, we briefly discuss one particular aspect of Waddington’s epigenetic approach, the network-oriented view that he put forward in the 1942 Endeavour paper, and the way in which this network view, Waddington’s epigenotype, is conceived today.

The epigenotype as a network: the many-to-many relations between genes and characters

In his 1939 book, An Introduction to Modern Genetics, Waddington had already introduced the term epigenotype, highlighting its developmental, interactive aspects:

One might say that the set of organizers and organizing relations to which a certain piece of tissue will be subject during development make up its ‘epigenetic constitution’ or ‘epigenotype’; then the appearance of a particular organ is the product of the genotype and the epigenotype, reacting with the external environment. (p. 156, emphasis added)

Both in the 1939 genetics textbook and in his subsequent book, Organisers and Genes, Waddington makes
it very clear that the ‘organizing relations’ are a dynamic network of interactions occurring during embryogenesis, and that the study of this network, the **epigenotype**, is the subject matter of the new integrative discipline, **epigenetics**. In the *Endeavour* paper, he defines the epigenotype more generally than he did in his 1939 book, and in terms more familiar to geneticists: he describes it as the whole complex of developmental processes lying between and connecting the genotype and the phenotype (p. 19). He also defines the term **epigenetics** as the study of the causal mechanisms through which genes bring about phenotypic effects (p. 18). ‘The Epigenotype’ has a strong and optimistic genetic orientation: Waddington has no doubt that a sophisticated genetic approach, which analyses the effects of the genes, can bridge the gap between the genotype and the developing phenotype. He presented the study of wing development in *Drosophila* as a concrete example of such an approach, and claimed at the end of the paper that ‘the analysis of the effects of genes has now progressed far enough to become merged with experimental embryology’ (p. 20).

The basis of this optimism was the realization that ‘the concatenations of processes linked together in a network’, which is the epigenotype, is amenable to genetic analysis. However, the kind of analysis that is required is a sophisticated one, which recognizes that a phenotypic trait is the result of many-to-many relations between genes and characters. On the one hand, one has to consider pleiotropic effects, such as those that had been studied and analysed by geneticists like Hans Grünberg, who had shown that one gene can have many effects. For example, as well as affecting fur colour, the ‘grey-lethal’ gene in the mouse leads to a failure in bone absorption, which has effects on the structure of the skeleton and teeth, and through these influences feeding behaviour. On the other hand, it has to be recognized that many different genes affect a single trait. As Waddington himself showed, during the 48 h after puparium formation the development of the wing of the fruit fly *Drosophila melanogaster* is affected by at least 15 genes.

Moreover, because both genetic mutations and embryological manipulations can bring about the same phenotype, studying the epigenotypic network of interactions can be approached in different ways. This was stressed by Richard Goldschmidt, who coined the term **phenocopy** to describe environmentally induced phenotypes that mimic genetic mutations. Phenocopies were seen by Waddington as clues to the network nature of the epigenotype. First, since, as he puts it, ‘there are no developmental events which they [genes] do not regulate and guide’ (p. 20), gene mutations can (sometimes) lead to changes in the network of processes, and eventually to a visible change in the phenotype. Secondly, since the very same altered phenotype can be brought about by environmental changes (e.g. experimental manipulations of embryogenesis) that directly affect the network of interactions itself, the epigenotype must be a responsive (plastic) ‘developmental system’. Analysis in terms of single genes can therefore tell us little about development, even when a single gene mutation has an effect on the behaviour of the network. The effect of the mutation, like that of an environmental perturbation, is not autonomous, but related to the cybernetic properties of the network. It is through the network view, Waddington suggested, that we can understand the dynamics of phenotypic development, which he depicted in his metaphor of the epigenetic landscape. The epigenetic landscape (a term not mentioned in the short *Endeavour* paper) has some interesting characteristics, which are underlain by epigenotype dynamics: it exhibits canalization, manifests critical periods when particularly big changes can be induced and shows developmental bifurcations that lead to sharply distinguished alternative outcomes. The epigenetic landscape changes during evolution, through processes of genetic assimilation. Evolution, for Waddington, was always the evolution of developmental systems—of dynamic epigenetic landscapes and epigenotypes.

In the *Endeavour* paper, Waddington only hints at these issues and presents them as open problems, although he does offer some fairly well-worked discussions of all of them in other publications from this period. But what Waddington called in the paper ‘epigenetic analysis’—the combined genetic and embryological deconstruction and reconstruction of development, which he so confidently believed was going to bridge the gap between genetics and experimental embryology—did not materialize as quickly as he anticipated. It took almost 50 years for the network approach to be incorporated into the centre of modern developmental and evolutionary biology.

The modern epigenetic network approach

The epigenomic network approach advocated by Waddington was complex and somewhat abstract, attempting to provide a general framework for thinking about the process of embryogenesis. A much simpler type of regulatory gene network was discovered and characterized by Jacob and Monod in the 1960s, and began to dominate thinking about gene regulation. Jacob and Monod’s ground-breaking study of the lac operon uncovered two basic building blocks of gene regulatory networks: *cis*-regulated genetic elements that reside in the chromosomal neighbourhood of genes and *trans*-acting factors (gene products or externally introduced factors such as sugars) that bind to the *cis*-acting elements, leading to the regulation of one or more adjacent genes. Elucidating the network of regulatory interactions of genes, gene products and external cues has become a major research
programme, and the bacterial lac operon illustrates some general aspects of regulatory networks, that are also manifested by networks found in higher organisms. In particular, it shows how regulatory networks can integrate different types of information leading to a transcriptional decision.\(^9\) This, we now know, involves interactions between proteins, changes in protein phosphorylation, modification of histones (in eukaryotes), and alterations in DNA methylation, all of which reflect the state of the cell as it responds to its developmental environment. Waddington realized the importance of Jacob and Monod’s model and its relevance to his own network thinking, but he was also aware that this simple model would need to be greatly modified in order to work in eukaryotic cells, with their ‘proteinaceous chromosomes’ and their huge and coordinated gene networks.\(^10,11\)

He was aware that the ‘organization’ of the genetic elements themselves (which includes the chromatin) is crucial for understanding gene regulation, and was therefore happy with Davidson and Britten’s 1969 model of gene regulation in eukaryotes, which came closer to his ideas, although he emphasized that additional components and structural considerations needed to be added to it to account for various aspects of embryogenesis, such as competence.\(^10\)

The study of genetic and developmental networks is thriving today, and much effort is devoted to establishing the interactions involved in developmental regulation, e.g. in the sea urchin embryo.\(^12\) This research is primarily concerned with \textit{cis}-regulatory elements and their role in the development of the embryo. It shows, how cell states are stabilized, even when the specification inputs are transitory; how the interactions between cells belonging to one tissue can smooth out local differences; and how processes such as these are involved in cell differentiation. Network interactions involve regulatory cues between the genes belonging to the network as well as the regulatory effects of external cues. The source of such cues may be the transcriptional state that the cell inherited through dedicated cell heredity mechanisms or inputs acquired from adjacent cells.\(^13\)

Recent research on developmental gene regulatory networks has led to the identification of recurrent ‘motifs’, such as various kinds of feedback loops, which serve as building blocks of more complex networks.\(^13\) More complex circuits, which are used for particular purposes in embryological development but whose abstract network topologies appear many times, have also been identified.\(^14\) In each particular case, different genes are involved, but the circuit performs the same logical function, and is utilized for the same kind of developmental purpose. These repeatable subcircuits point to a modular architecture for developmental gene regulatory networks, where modules are responsible for particular developmental functions. It is possible that network subcircuits appeared earlier in evolution than the complex networks found in modern organisms of which they are components.\(^15\) Although the evolution of regulatory networks was central to Waddington’s view of evolution, and he saw evolutionary adaptation in terms of changes in the regulatory architecture of the epigenotype, the lack of detailed knowledge about network architecture in different species precluded, during his lifetime, a comparative phylogenetic approach based on network organization. We have no doubt that he would have been deeply interested in this line of research.

He would have been no less interested in the discoveries of the more general properties of gene networks, and their relevance to evolutionary change. Network modularity can be studied by examining the properties of the topology of various regulatory networks. For example, Fraser\(^15\) (reviewed in Ref.\(^16\)) partitioned proteins with many connections (hubs) in protein–protein interaction networks into ‘party hubs’, which interact with multiple partners within a network module, and ‘date hubs’, which interact with partners in different modules. The former evolve slowly, whereas the evolutionary rate of the latter is comparable with that of proteins with no partners. Koonin and Wolf made the plausible suggestion that network modules are evolutionarily conserved, whereas inter-module hubs are a source of innovation and variation during evolution.\(^16\) This focus on network building blocks reinforces the framework presented by West-Eberhard,\(^17\) who extended Waddington’s approach, emphasizing the importance of modularity for plasticity.

Just as Waddington realized 70 years ago, the network perspective helps to explain the robustness of organisms to genetic perturbations; in other words, it sheds light on the genetic aspect of developmental canalization. For example, by using gene deletion mutants, it has been shown that only 18.7\% of the protein-coding genes in yeast are essential for growth in full glucose medium.\(^18\) The picture that emerges when more than one gene is deleted is, however, much more interesting.\(^19\) It turns out that when two genes, each of which can be deleted with no phenotypic effect, are both deleted, the result can be lethality. Even though each gene on its own may be functionally redundant, both are still active in most conditions. They are therefore exposed to natural selection, so do not accumulate detrimental mutations, and contribute to the robustness of the pathways in which they are involved. This type of robustness may help explain cases in which mutations in multiple genes are required for a phenotypic effect to be manifested, as Waddington argued theoretically from 1930s onwards, and was able to demonstrate empirically in his assimilation experiments (reviewed in refs\(^11,20\)). It also partially explains the limited success of genome-wide association studies in uncovering single genes that are implicated in human diseases.\(^21\)
The complexity of the situation is revealed by recent observations showing that gene pairs that provide backup for one another have different expression patterns in most growth conditions, and that the transcription level of one member of the pair can increase in response to mutations that inactivate its partner. Models that analyse this type of compensatory behaviour show that it filters out environmental or developmental noise from the transcriptional pathway. It has been suggested that the regulatory precision that this provides, rather than compensation for gene loss, may explain the functional redundancy of genetic pathways.²² This kind of canalization is exactly what Waddington predicted: the network architecture allows for redundancy, partial functional overlap and dynamic compensation for environmental noise.²⁰

As these recent studies on genetic and developmental networks show, Waddington’s epigenotype perspective, which was based on the assumption that the relations between genes and characters are many-to-many, is now commonplace. In addition, the regulatory dynamics found in networks and their recurring architectural properties have raised new questions about the evolution of animal genomes, and opened up new explanatory approaches to robustness and the evolution of complex traits.

Epigenetics today

In recent years, epigenetics has certainly become a growth area. However, as has been pointed out many times, over the years the meaning of ‘epigenetics’ has undergone some changes from the rather general notion suggested by Waddington in his Endeavour paper, which was the study of the causal developmental mechanisms linking the genotype and the phenotype. It has become a more specific term: epigenetics is defined today as the study of the mechanisms that lead to ‘persistent’ developmental changes in gene activities and effects, but do not involve altered DNA base sequences. An important component of epigenetics is ‘epigenetic inheritance’, the transmission of phenotypic variations that do not stem from differences in DNA base sequence from one generation of cells or organisms to the next. (For historical overviews of epigenetics and epigenetic inheritance, see refs²³–²⁸.)

Waddington was, of course, well aware of the persistence of developmental phenotypes, and explained them in terms of the re-construction of the network dynamics, but his work did not focus on cell heredity, a line of research that at that time was pursued mainly by microbiologists and cell biologists.²⁵,²⁹,³⁰ However, as we pointed out earlier, he sensed that the proteinaceous nature of the eukaryotic chromosomes makes a difference to the way gene expression is regulated, and sought chromosomal mechanisms that could help to explain the phenomenon of developmental competence at the genomic level.¹⁰,¹¹ As we know today, epigenetic marks such as DNA methylation and histone modifications, and their associated reconstruction mechanisms, are some of the factors and processes that underlie such competence. Cellular epigenetic inheritance, which is a process he did not anticipate, nevertheless fits beautifully into his general view of the epigenotype with its myriad of stabilizing mechanisms. It is interesting to speculate about what he would have made of transgenerational epigenetic inheritance: it could readily have been accommodated within his evolutionary framework as a stage in the process of genetic assimilation, and as an aspect of active developmental re-construction. It would have been another epigenomic factor in the great development–heredity–evolution entangled web.

Acknowledgements

We are very grateful to Marion Lamb and Ayelet Lamm for their critical and constructive comments.

References

As embryologists know, context is everything. The same genes that give rise to a hair follicle on a wrist can give rise to a podocyte in the kidney or a neuron in the brain. The metamorphic hormone thyroxine can tell one cell to differentiate while telling its neighbouring cell to die. Conrad Hal Waddington’s ‘Epigenotype’ paper in Endeavor\(^1\) has to be seen in several contexts. The first is political and has to do with scientific management. It is 1941, the peak of World War II. Britain is being pounded, and it pounds back. B. Power and C.P. Snow enlist science and scientists for military service, and the Tots and Quots club, which included such public scientists as Solly Zuckerman, J.D. Bernal and C.H. Waddington, envisage science playing increasingly important roles in high-level war planning and in the operation of the national economy.\(^2\) Integration, teamwork and alliances had to be planned and generated, and a new concept, ‘operations research’,\(^3\) was to provide scientific management for the public good. Operations research: how does one coordinate different decisions so that they generate a coherent desired output? How do you go from parts to wholes? How does one mediate between competition and cooperation? These constitute an appropriate set of problems for an embryologist such as C.H. Waddington; for the embryo knows how to do such things. Development is the coordination of myriads of individual decisions (divide or not divide; become ectoderm or mesoderm; form a leg or an arm; differentiate or die) into a breathing, digesting, moving whole, capable of reproducing. Wartime operations research provides one of the contexts in which Waddington writes an article on ‘The Epigenotype’.

And there is an academic political context, as well.\(^4\)\(^5\) Experimental embryology has just had its Golden Age, and it has stalled. The Organizer work of the Spemann laboratory, the gradient work of the Höstadius laboratory, the concepts of morphogenetic field and the laws of Gestaltungsgeschichte had given

Commentary: ‘The Epigenotype’ by C.H. Waddington

Scott F Gilbert\(^1,2\)

\(^1\)Correspondence to: Department of Biology, Swarthmore College, Swarthmore, PA, 19081, USA and \(^2\)Department of Biotechnology, University of Helsinki, Helsinki, Finland. E-mail: sgilber1@swarthmore.edu

\(^{30}\) Nanney DL. Microbiology, developmental genetics and evolution. *Am Nat* 1960;94:167–79.