Health Policies and Interventions

I get height with a little help from my friends: herd protection from sanitation on child growth in rural Ecuador

James A Fuller,¹* Eduardo Villamor,¹,² William Cevallos,³ James Trostle⁴ and Joseph NS Eisenberg¹

¹Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA ²Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA, ³Centro de Biomedicina-Carrera de Medicina, Universidad Central del Ecuador, Quito, Ecuador and ⁴Department of Anthropology, Trinity College, Hartford, CT, USA

*Corresponding author. 1415 Washington Heights, Ann Arbor, MI 48109, USA. E-mail: jafuller@umich.edu

Accepted 18 December 2015

Abstract

Background: Infectious disease interventions, such as vaccines and bed nets, have the potential to provide herd protection to non-recipients. Similarly, improved sanitation in one household may provide community-wide benefits if it reduces contamination in the shared environment. Sanitation at the household level is an important predictor of child growth, but less is known about the effect of sanitation coverage in the community.

Methods: From 2008 to 2013, we took repeated anthropometric measurements on 1314 children under 5 years of age in 24 rural Ecuadorian villages. Using mixed effects regression, we estimated the association between sanitation coverage in surrounding households and child growth.

Results: Sanitation coverage in the surrounding households was strongly associated with child height, as those with 100% coverage in their surroundings had a 67% lower prevalence of stunting [prevalence ratio (PR) 0.32, 95% CI 0.15-0.69] compared with those with 0% coverage. Children from households with improved sanitation had a lower prevalence of stunting (PR 0.86, 95% CI 0.64-1.15). When analysing height as a continuous outcome, the protective effect of sanitation coverage is manifested primarily among girls during the second year of life, the time at which growth faltering is most likely to occur.

Conclusions: Our study highlights that a household’s sanitation practices can provide herd protection to the overall community. Studies which fail to account for the positive externalities that sanitation provides will underestimate the overall protective effect. Future studies could seek to identify a threshold of sanitation coverage, similar to a herd immunity threshold, to provide coverage and compliance targets.

Key words: Sanitation, Herd Protection, Stunting, Malnutrition
Introduction
Childhood stunting (low height for age) affected 26% of children under 5 years old worldwide in 2011, contributing to over 1 million deaths. Childhood stunting is an important risk factor for mortality and outcomes later in life, including behavioural problems, underachievement in school and chronic diseases such as diabetes. Child growth is influenced by many factors, including fetal exposures, food security, micronutrient deficiencies and infections from inadequate access to water, sanitation and hygiene.

Increasing evidence suggests that a poor sanitation environment leads to not only diarrhoea and helminth infection but also persistent exposure to pathogens responsible for environmental enteropathy, a chronic subclinical infection of the gut characterized by atrophy of the intestinal villi and decreased absorptive capacity. All three of these conditions reduce nutrient absorption and promote an immune response that increases energy expenditure, resulting in slower growth.

Most studies of sanitation and nutrition have focused on the sanitation environment of the household, ignoring any effect of neighbouring households. Increasing evidence suggests that sanitation can provide positive externalities, i.e. herd protection, whereby improved sanitation in one household prevents infection in nearby households by reducing contamination of the shared environment. We undertook a longitudinal study to estimate the effect of sanitation at the household and neighbourhood levels on child growth. We assessed the existence of general herd protection, defined as a partial reduction in risk due to reduced exposure levels in the surrounding population, and the existence of a herd protection threshold, defined as a particular level of exposure that results in the total elimination of risk.

Methods
Study population
The study took place in 24 rural villages in the Esmeraldas province of north-western Ecuador. These villages lie along several river systems near the town of Borbón, and many are still not accessible by road. The population is predominantly Afro-Ecuadorian, though some villages have high numbers of Chachis, an indigenous group. Between December 2008 and July 2013, each village was visited four times. The study design can be considered a repeated cross-section of all households and individuals, but longitudinal in the sense that individuals and households can be followed across study visits. More details of this population and the study design have been published previously.

Anthropometry
Anthropometric data were collected from all children under 5 years of age at each of the study visits. Age in days was calculated by the difference between date of measurement and the date of birth. At each study visit, standing height was measured by a trained nurse for all children that could walk (typically older than 12 months) using a Seca mechanical measuring tape (model 206, Hamburg, Germany). For children that could not walk, length was measured using a Seca mobile measuring mat (model 210). Height-for-age z scores (HAZ) were calculated using World Health Organization Standards. Observations were excluded if a z score was or . A binary indicator for moderate or severe stunting was created based on z scores of less than 2. Chachi children were excluded from the analysis because their anthropometry was substantially different from that of other children.

Sanitation variables
Concurrently with anthropometry, sanitation information was collected for each household during each of the 4 study visits. In this population we observed a full range of sanitation options, namely flush and pour-flush toilets, pit latrines with and without a washable slab, pit latrines with and without a seat (pit latrines without seats are typically open holes) and households that used no facilities. We classified each household’s sanitation access as unimproved.
each study visit and lasted for 2 to 7 days per village. Ethnographic observations and interviews related to sanitation, breastfeeding and other health-related behaviours were conducted at the study area for approximately 20 years. Focused observations. Throughout the study period, ethnographic observations were not imputed.

Ethnography

Ethnographic observations were led by a full-time anthropologist who had resided in the study area for approximately 20 years. Focused observations and interviews related to sanitation, breastfeeding and other health-related behaviours were conducted at each study visit and lasted for 2 to 7 days per village. Extended visits were also conducted, with anthropologists spending 1 to 8 weeks in a village at a time. Field notes and digitally recorded interviews were subsequently transcribed and maintained in a Spanish textual database where they were coded and retrievable for analysis.

Ethical approval

Informed consent was obtained from a guardian of each child before anthropometric measures were taken. Key informants in each household provided informed consent before providing household information. All study protocols were approved by institutional review board committees at the University of Michigan, Trinity College, and Universidad San Francisco de Quito.

Statistical analysis

Bivariate relationships were examined separately for each study visit. Pearson’s chi-square test was used to test the association of stunting prevalence across levels of categorical variables. Because enteric pathogens are often transmitted through the environment, we sought to control for spatial clustering. We assessed spatial correlation between households by running linear mixed models with HAZ as the dependent variable and constructing empirical semivariograms of the residuals. We then re-run these models including an exponential spatial covariance function, where observations close in space will be more correlated than those far away. This approach accounts for clustering of children in the same household and similarities among children in neighbouring households. These spatial models showed little evidence of spatial correlation and had a higher Akaike Information Criterion (AIC) and similar regression coefficients compared with models without spatial covariance (see Supplementary materials, available as Supplementary data at IJE online). As a result, we opted to use simpler models without spatial covariance.

A series of mixed effects Poisson regressions (Models 1-4) was used to model the association between sanitation and the prevalence of moderate or severe stunting (HAZ < −2) across all study visits. To account for multiple observations on the same children over time, these models include a random intercept for each child. The exponentiated coefficients of these models can be interpreted as a prevalence ratio (PR). Models 3 and 4 compare the prevalence of moderate stunting among children from areas with 100% coverage with areas with 0% coverage, and thus show the maximum potential impact of sanitation coverage. Because this amount of change in sanitation coverage is unrealistic, we also present the prevalence ratio associated with a 2-SD (standard deviation) (36.3 percentage
points) change in coverage. This type of standardized regression coefficient can be directly compared with the prevalence ratio for the binary household sanitation variable to assess their relative importance.31

In additional analyses, we examined the association between sanitation and linear growth using height as a continuous outcome. Growth curves were estimated using mixed effects linear regression with height in centimetres as the dependent variable. Age was included in the model as a restricted cubic spline with knots at 0.5, 1, 1.5, 2.5 and 4 years. These models account for repeat observations over time by including a random intercept for each child and a random slope for the linear age term for each child. Because environmental conditions may affect the growth of boys and girls differently, the growth curve models include a three-way interaction between the age terms, sanitation coverage and sex. This allows boys and girls to have distinct growth curves, and for the effect of sanitation coverage to vary by age.

Our final analysis involves predicting the prevalence of moderate or severe stunting with sanitation coverage included as a categorical variable, based on 10% increments. This allows for the detection of non-linearity in the association between sanitation and height, which may suggest a threshold effect. An upper threshold would exist if sufficient coverage could interrupt transmission of enteric pathogens. This is analogous to the concept of a herd immunity threshold of vaccination coverage, above which additional vaccination provides little community benefit. A lower threshold would exist if a critical mass were required before any community effect is observed. This model includes all covariates in the previous analyses and a random intercept for each child. All statistical analysis was conducted using the lme432 and nlme33 packages in R version 3.0.2.

Results
Summary statistics
The study population comprised 1618 children for a total of 2692 observations; 39 (1.4%) of these observations were missing data on either child’s height, the child’s age or the child’s sex, making it impossible to calculate the HAZ. Of those with a calculated HAZ, 64 (2.4%) observations had extreme values (HAZ > 6 or < -6). An additional 366 (14.1%) observations were missing data on either a household or neighbourhood covariate, resulting in a final sample of 1314 children for a total of 2223 observations; 672 children were observed during only one study visit, 409 children were observed twice, 200 children were observed three times and 33 children were observed during all four study visits.

Approximately 75% of children were from households with an improved sanitation facility. Sanitation coverage within 500 m of households varied from 0% to 100%, though only 8% of children were from households with <50% coverage (Figure 1).

Table 1 shows the bivariate associations between moderate stunting (height-for-age z score < -2) and each covariate of the study. Overall, the prevalence of moderate stunting ranged from 12.1% in the third study visit to 14.3% in the first visit. In all four study visits, stunting was more common among children from households with unimproved sanitation than those from households with improved sanitation. The prevalence of stunting tended to be inversely associated with sanitation coverage in surrounding households, with the lower quintiles of coverage having the highest prevalence of stunting, with the exception of the first study visit. Stunting was also more common among males than females, though the difference narrowed in the fourth study visit.

Stunting
Children from households with improved sanitation had a 26% lower prevalence (PR 0.74, 95% CI 0.57-0.98) of being moderately or severely stunted compared with those from households without improved sanitation (Table 2, Model 1). After adjusting for household and child characteristics, this protective association was unchanged (Table 2, Model 2). There was a clear non-linear association between age and stunting, where the prevalence of stunting was lowest in the first year of life, highest in the second year and remained high but gradually decreased for the remaining years. We also observed that the prevalence of stunting was 40% higher (PR 1.40, 95% CI 1.09-1.81) among male children compared with females. Household wealth quintile and education were not associated with stunting.

![Figure 1. Distribution of coverage of improved sanitation within 500 m of the household in rural northern Ecuador, 2008-11.](https://academic.oup.com/ije/article-abstract/45/2/460/2572609)
Sanitation coverage within 500 m of the household was a much stronger predictor of stunting than the household’s own sanitation status. The prevalence of stunting was 63% lower (PR 0.37, 95% CI 0.20-0.69) among children from areas with 100% coverage compared with children from areas with 0% coverage (Table 2, Model 3). Adjusting for characteristics of the child, household and neighbourhood increased the point estimate (PR 0.32, 95% CI 0.15-0.69) (Table 2, Model 4). After accounting for sanitation coverage, however, the association between household sanitation and stunting was attenuated (PR 0.86, 95% CI 0.64-1.15). A 2-SD change in sanitation coverage (36.3 percentage points) was associated with a 34% reduction in moderate stunting (PR 0.66, 95% CI 0.50-0.87). Stunting was still associated with both the age and the sex of the child.

Table 1. Prevalence of stunting across different levels of covariates among children <5 years of age in rural northern Ecuador, 2008-11

<table>
<thead>
<tr>
<th>Number stunted (%)</th>
<th>Visit 1 (n = 489)</th>
<th>Visit 2 (n = 510)</th>
<th>Visit 3 (n = 605)</th>
<th>Visit 4 (n = 619)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>70 (14.3)</td>
<td>62 (12.2)</td>
<td>73 (10.3)</td>
<td>85 (13.8)</td>
</tr>
<tr>
<td>Household sanitation(^a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unimproved</td>
<td>29 (16.2)</td>
<td>19 (16.5)</td>
<td>21 (15.8)</td>
<td>20 (17.5)</td>
</tr>
<tr>
<td>Improved</td>
<td>41 (13.2)</td>
<td>43 (10.9)</td>
<td>52 (11)</td>
<td>65 (12.9)</td>
</tr>
<tr>
<td>Sanitation coverage(^b) (quintiles)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (0-63%)</td>
<td>30 (15.4)</td>
<td>20 (25.6)*</td>
<td>18 (18.4)*</td>
<td>9 (15.3)</td>
</tr>
<tr>
<td>2 (63-76%)</td>
<td>18 (14.5)</td>
<td>9 (9.8)</td>
<td>7 (6)</td>
<td>21 (18.6)</td>
</tr>
<tr>
<td>3 (76-85%)</td>
<td>15 (12.3)</td>
<td>12 (10.3)</td>
<td>13 (10.4)</td>
<td>16 (16.3)</td>
</tr>
<tr>
<td>4 (85-90%)</td>
<td>1 (9.1)</td>
<td>11 (8.3)</td>
<td>13 (9.8)</td>
<td>19 (12.6)</td>
</tr>
<tr>
<td>5 (90-100%)</td>
<td>6 (16.2)</td>
<td>10 (11.1)</td>
<td>22 (16.3)</td>
<td>20 (10.2)</td>
</tr>
<tr>
<td>Household wealth (quintiles)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Poorest</td>
<td>9 (10.8)</td>
<td>4 (10.8)</td>
<td>7 (26.9)</td>
<td>4 (19)</td>
</tr>
<tr>
<td>2</td>
<td>18 (15.7)</td>
<td>24 (18.5)</td>
<td>18 (12.6)</td>
<td>18 (14.6)</td>
</tr>
<tr>
<td>3</td>
<td>16 (14.7)</td>
<td>14 (11.8)</td>
<td>17 (10.8)</td>
<td>27 (16.7)</td>
</tr>
<tr>
<td>4</td>
<td>19 (18.4)</td>
<td>12 (10.3)</td>
<td>20 (13.8)</td>
<td>11 (6.8)</td>
</tr>
<tr>
<td>5 Wealthiest</td>
<td>8 (10.1)</td>
<td>7 (7.5)</td>
<td>11 (8.1)</td>
<td>25 (16.7)</td>
</tr>
<tr>
<td>Neighbourhood wealth(^c) (quintiles)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Poorest</td>
<td>17 (14.8)</td>
<td>15 (12.9)</td>
<td>18 (11.9)</td>
<td>6 (9.5)*</td>
</tr>
<tr>
<td>2</td>
<td>10 (13.5)</td>
<td>12 (14.1)</td>
<td>16 (12.2)</td>
<td>29 (17.8)</td>
</tr>
<tr>
<td>3</td>
<td>17 (12.6)</td>
<td>10 (11.2)</td>
<td>4 (6.5)</td>
<td>10 (6.6)</td>
</tr>
<tr>
<td>4</td>
<td>19 (15.7)</td>
<td>6 (12.5)</td>
<td>15 (10.3)</td>
<td>34 (18)</td>
</tr>
<tr>
<td>5 Wealthiest</td>
<td>7 (15.9)</td>
<td>19 (11.1)</td>
<td>20 (16.9)</td>
<td>6 (11.8)</td>
</tr>
<tr>
<td>Years of education (maximum of the household)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5</td>
<td>16 (11.2)</td>
<td>15 (14.6)</td>
<td>11 (10.6)</td>
<td>18 (17)</td>
</tr>
<tr>
<td>6-7</td>
<td>20 (13.5)</td>
<td>23 (13.9)</td>
<td>22 (11.1)</td>
<td>21 (11.4)</td>
</tr>
<tr>
<td>8-9</td>
<td>15 (20)</td>
<td>8 (8.9)</td>
<td>16 (13.9)</td>
<td>13 (12.1)</td>
</tr>
<tr>
<td>10 or more</td>
<td>19 (15.4)</td>
<td>16 (10.7)</td>
<td>24 (12.6)</td>
<td>33 (14.9)</td>
</tr>
<tr>
<td>Child’s sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>26 (10.4)*</td>
<td>24 (9.1)*</td>
<td>30 (9.8)</td>
<td>41 (13.3)</td>
</tr>
<tr>
<td>Male</td>
<td>44 (18.3)</td>
<td>38 (15.5)</td>
<td>43 (14.2)</td>
<td>44 (14.2)</td>
</tr>
<tr>
<td>Child’s age (years completed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>7 (8.3)*</td>
<td>10 (9.9)</td>
<td>6 (5.5)*</td>
<td>8 (9.2)</td>
</tr>
<tr>
<td>1</td>
<td>23 (20.7)</td>
<td>16 (16.8)</td>
<td>22 (17.5)</td>
<td>22 (16.3)</td>
</tr>
<tr>
<td>2</td>
<td>26 (22.8)</td>
<td>13 (11.5)</td>
<td>26 (20.3)</td>
<td>21 (16.7)</td>
</tr>
<tr>
<td>3</td>
<td>5 (5.4)</td>
<td>15 (14.6)</td>
<td>14 (10.2)</td>
<td>19 (12.8)</td>
</tr>
<tr>
<td>4</td>
<td>9 (10.3)</td>
<td>8 (8.2)</td>
<td>5 (4.7)</td>
<td>15 (12.4)</td>
</tr>
</tbody>
</table>

\(^{a}\)Improved sanitation includes pit latrines with a slab and seat, pour-flush and flush toilets. Unimproved sanitation includes no facility, pit latrine without a slab, and pit latrines without a seat.

\(^{b}\)Defined as the proportion of households within a 500-m radius that have improved sanitation.

\(^{c}\)Defined as the mean wealth index of households within a 500-m radius.

\(^*\)P < 0.05, chi-square test of the association between moderate stunting and the covariate during a given study visit.
Growth curves
During the first year of life, children in this cohort were on average equal to the WHO standard population (Figure 2). During the second year of life, however, growth stalled, leading to 3.0- and 3.9-cm deficits by age 24 months among girls and boys, respectively. These deficits mostly persisted up to 5 years of age.

Girls with 100% sanitation coverage in their vicinity were taller than those with 0% coverage. At 2 years of age, girls in areas with 100% coverage were 4.9 cm ($P < 0.01$) taller than girls from areas with 0% coverage. Among boys, however, there appeared to be no association between sanitation coverage and growth.

Threshold analysis
In order to detect a possible threshold, we also ran a model with sanitation coverage included as a categorical variable based on 10% increments. The prevalence of stunting was highest (42%) among children from areas with 0% to 10% sanitation coverage and decreased with higher levels of coverage (Figure 3). Beyond 31% to 40% coverage, however, there seemed to be no additional benefit from living in an area with greater sanitation coverage (upper threshold). Our study, however, included relatively few children in areas with low sanitation coverage, resulting in a large degree of statistical uncertainty.

Discussion
This is the first longitudinal study showing an association between sanitation coverage in the community and child growth. The association between stunting and improved sanitation at the household level was modest, but it was eclipsed by the much stronger association of sanitation coverage in the surrounding households. Had we only accounted for household sanitation, as many studies do, we would have drastically underestimated the overall benefit of sanitation. Cluster randomized trials capture both the household and the community effects of sanitation, and thus will not result in an underestimate. Such studies, however, typically do not separate the effects of household access from the effects of community coverage. Our results show that the benefits of sanitation are shared across the community, suggesting that the households that are difficult to reach may be protected by sanitation in neighbouring households.

We also sought to identify whether the association with sanitation coverage exhibited a threshold. We saw a slight indication of an upper threshold of sanitation coverage,
but our inference was seriously hindered by a small sample at lower levels of coverage. Thus our data could not assess definitively whether a threshold exists or whether incremental increases in coverage lead to incremental increases in nutritional status across all levels of coverage.

Two recent cluster randomized trials \(^3\,4,\,35\) in India’s Total Sanitation Campaign showed no health gains from improved sanitation. Coverage and/or compliance for each trial was low, and that may be at least partially the reason for the null result. The Clasen \(\text{et al.}^{34}\) trial achieved 63% coverage in intervention villages compared with 12% in controls, but compliance was remarkably low (39% of latrines were not used by anyone in the household\(^{36}\)). In the Patil \(\text{et al.}^{35}\) study, open defaecation among adults was still

\[\text{Figure 2.} \quad \text{Predicted height in cm among females and males by coverage of sanitation in the 500 m surrounding the household, northern Ecuador, 2008-11. Multilevel model includes a three-way interaction between child’s age, child’s sex and sanitation coverage, and is adjusted for the following time-varying covariates: household sanitation, household education, household wealth and wealth in the surrounding households. Age was included as a continuous variable using a restricted cubic spline with knots at 0.5, 1, 1.5, 2.5 and 4 years. Model also includes random intercept and random age slope for each child.}\]

\[\text{Figure 3.} \quad \text{Predicted prevalence of moderate or severe stunting (and 95% confidence limits) by level of sanitation coverage within 500 m of the household, rural northern Ecuador, 2008-2011. Predictions are adjusted for age, household sanitation, household education, household wealth, and neighborhood wealth. Model also includes random intercept for each child.}\]
very high at 73% in intervention villages compared with 84% in control villages. These trials may, therefore, indicate the existence of a critical threshold of coverage and use, below which sanitation interventions have little effect. Our study, conducted in a natural setting as opposed to a sanitation campaign, did not disentangle the concepts of coverage and compliance.

The herd protective effect of sanitation manifested during the second year of life, when a child’s growth is most likely to falter, suggesting that sanitation can play an important role in prevention. Although sanitation showed a strong protective effect, children with the optimal sanitation scenario were still stunted, suggesting the importance of other pathways such as breastfeeding and micronutrients. We also observed important sex differences. First, boys were more likely to be stunted than girls. Based on ethnography that we conducted in our study villages, the duration of breastfeeding in this population is shorter for boys than for girls, possibly leading to better anthropometric outcomes in girls. This finding of female nutritional advantage is consistent with studies conducted in Guatemala and sub-Saharan Africa, though studies in South Asia typically report male nutritional advantages.

Second, sanitation coverage in the vicinity was protective for girls but not for boys. One possible explanation is that boys, due to earlier weaning, have a higher pathogen burden from food and water. At high levels of exposure from these other pathways, the cleanliness of the community environment may not be as important.

Other studies have shown some evidence of herd protection from sanitation. Barreto et al. showed that after a decade-long city-wide sanitation campaign, reductions in the prevalence of diarrhoea were explained by increases in sanitation coverage and not by the sanitation of the household. Buttenheim followed 153 children in Bangladesh to assess both HAZ and weight-for-age among 5731 children. They also saw no effect of household sanitation, but children from sample clusters with 100% sanitation coverage had 0.47 greater HAZ than children from clusters with 0% coverage. Corsi et al. used data from the Demographic and Health Survey in Bangladesh, and compared both HAZ and weight-for-age among 5731 children. They did not, however, disentangle the effects of water and sanitation, and the protective community effect of water and sanitation disappeared after adjusting for other community-level covariates. Using a much larger survey in rural India, Andres et al. observed an effect of both household sanitation and community sanitation on the prevalence of diarrhoea.

Our study makes several key contributions to the literature. First, we employ a longitudinal study on a large sample of children. With the exception of Barreto et al. and Buttenheim, all other studies on this topic have been cross-sectional or ecological in nature. Even those studies that were longitudinal had short follow-up periods (<1 year). Our longitudinal design, covering 5 years, allowed for a robust construction of growth curves; it is not an intervention study, hence causal inference related to changes in sanitation coverage are limited. Second, we sampled all households in the villages along with the GPS location of each household. National household surveys use a multiple-stage sampling design, where neighbourhood sanitation coverage is calculated by the non-self mean of sanitation in the survey cluster. Because all households in a survey cluster are not sampled, the estimate of sanitation coverage is susceptible to random sampling error, which will bias the results toward the null. Also, survey clusters may vary in size geographically, a problem that we addressed by defining employing a 500-m radius.

Because this is an observational study, it is susceptible to confounding. Just as households with improved sanitation are typically different in many ways from households with unimproved sanitation, communities with high sanitation coverage are different from those with low coverage. Many of these differences may also be risk factors for stunting. We have attempted to capture these differences by controlling for education, household wealth and community wealth. Information on breastfeeding, nutritional intake, handwashing and food security was unavailable, limiting our ability to draw inferences from our study. Other studies have adjusted for these factors, but none has adjusted for all simultaneously.

Based on data from our study site in northern coastal Ecuador, we provide evidence that sanitation coverage has a stronger impact on child height than sanitation at the household level. As with other diseases and interventions, these externalities suggest that community context should not be ignored, for failure to take this into account will lead to an underestimate of the overall protective effect of sanitation. Also, these findings raise the possibility that a sanitation campaign can protect everyone in a community, even those that are most vulnerable and difficult to reach. Future studies should investigate the link between sanitation coverage and child growth by incorporating causal intermediates such as symptomatic diarrhoea, helminth infection and environmental enteropathy, as well as accounting for other pathways such as breastfeeding and nutritional intake.
Supplementary Data

Supplementary data are available at IJE online.

Funding

This work was supported by the National Institute of Allergy and Infectious Diseases [RO1-AI050038].

Acknowledgements

The authors would like to thank the Ecologia, Desarrollo, Salud y Sociedad (EcoDESS) project research team for their invaluable contributions to data collection, especially Denys Tenorio for his help in mapping latrines and households, and administrative support at Universidad San Francisco de Quito.

Author contributions

J.A.F contributed to the literature search, data analysis, data interpretation and writing of the manuscript. E.V. contributed to the data analysis and data interpretation. W.C. contributed to the study design, data collection and data interpretation. J.T. contributed to the study design, data collection, data analysis and data interpretation.

Conflict of interest: The authors have no conflicts of interest to declare.

References