Implementation of a **Bowel Protocol** to Improve Enteral Nutrition and Reduce *Clostridium difficile* Testing

Jillian Wanik, DCN, RDN
Colleen Teevan, PharmD, BCPS, BCCCP
Lynn Pepin, BSN, MS, RN, CIC
Laura Andrews, PhD, APRN, ACNP-BC
Linda Dalessio, EdD, CCRN, APRN-BC
Jennifer Feda, RDN, CDN
Noubar M. Kevorkian, MD
Sharon Weintraub, MD

**BACKGROUND**
Underfeeding is common among adult patients receiving enteral nutrition. Constipation and diarrhea have been associated with low enteral nutrition volume in critically ill patients. In patients with diarrhea, *Clostridium difficile* is often suspected and tested for, although medications, illness, or enteral formulas are usually the cause. The use of bowel protocols to proactively address constipation, diarrhea, and inappropriate testing for hospital-onset *C difficile* infection, thereby improving enteral nutrition, remains unclear.

**OBJECTIVE**
To evaluate the efficacy of implementing protocols to decrease constipation, diarrhea, and inappropriate testing for hospital-onset *C difficile* infection, and to deliver larger enteral nutrition volumes in a critical care unit.

**METHODS**
A prospective convenience sample was used. The primary outcome was the proportion of patients receiving greater than or equal to 80% of their prescribed caloric volume 1 week (minimum 4 days) after initiating enteral nutrition. Rates of testing for hospital-onset *C difficile* infection were analyzed before and after the protocol was implemented.

**RESULTS**
After the protocol was implemented, patients experienced significant increases in delivery of enteral nutrition volume—up to 78% of the goal volume (*P* = .048). The standardized infection ratio of hospital-onset *C difficile* infection decreased 43% (*P* = .04).

**CONCLUSIONS**
The implementation of bowel protocols improved delivery of total enteral volumes and reduced inappropriate testing for hospital-onset infections with *C difficile*, and they may improve patient safety and facilitate positive patient outcomes. (*Critical Care Nurse*. 2019;39[6]:e10-e18)
n critically ill adult patients, enteral nutrition (EN) policies, procedures, and flowcharts can help standardize nutrition therapy and are associated with improved delivery of EN. Clearly defined flowcharts that start bowel and prokinetic agents concurrently with EN can reduce interruptions to EN by increases in gastric residual volume (GRV). Shorter length of stay, fewer infections, and shorter duration of mechanical ventilation are associated with patients receiving rates of EN at 60% to 70% of goal within the first week after admission to a critical care unit. In a prospective, observational international cohort study investigating nutritional support, 80% of the goal volume indicated adequate enteral nutrition. Additional research associates an optimal range of calorie intake between 70% and 100% with significantly improved survival in critically ill patients.

At the Hospital of Central Connecticut, an interprofessional critical care advisory team completed in 2014 work related to enteral nutritional volumes; the aim of this work was to improve rates of achieving EN goals. Team members included the critical care medical director, medical and surgical intensivists, and members of the critical care staff: the nurse manager, a nurse educator, advanced practice registered nurses, staff nurses, a dietitian, a social worker, and a pharmacist. Upon initiation of this protocol, rates of achieving EN volume goals increased from 63% to 79% (J. Wanik, DCN, RDN, unpublished data, March 2015). Quarterly reviews over the subsequent 2 years, however, showed a reduction in these rates to 68%. Investigation into the cause of these reductions found that EN was held or ceased unnecessarily because of a lack of clear guidelines for managing increased GRV or the development of constipation or diarrhea.

Critical illness, immobility, antibiotics, and sedatives such as opioids can lead to constipation or diarrhea, and they may slow gastrointestinal motility, which in turn leads to a larger GRV. All of these factors can contribute to a longer length of stay. Constipation, if not treated effectively, can lead to clinically important bowel dysfunction, feeding intolerance, worsening distention, and discomfort. In severe cases, it can effectively evolve into a large-bowel obstruction, even leading to perforation of the gastrointestinal tract.

Diarrhea is a common complication in hospitalized patients: up to 32% develop diarrhea. Stool frequency increases the risk of losing fluid and electrolytes, potentially interrupts nutritional support, increases skin breakdown, and contributes to the development of pressure injury. These complications may ultimately result in a longer length of stay. Health care providers often focus on *Clostridium difficile* infection as the primary cause of diarrhea, yet less than 20% of diarrhea in hospitalized patients is attributable to this pathogen. Most cases of diarrhea are associated with medications, enteral feeding formulations, or underlying critical illness.

The current literature states that between 3% and 26% of the acute care hospital population is colonized with *C difficile*. To our knowledge, no data support identifying or isolating patients colonized with *C difficile*. Current practice recommendations from the Society for Healthcare Epidemiology and Infectious Diseases of America recommend against testing asymptomatic patients. Polymerase chain reaction testing at health care facilities does not distinguish between colonization and disease. At our facility, the standardized infection ratio (SIR) for laboratory-identified hospital-onset *C difficile* has increased over the past 2 years. The SIR is a summary measure used to track hospital-associated infections.
over time at a national, state, or local level; it adjusts for various facility and patient factors that contribute to the risk of hospital-associated infection within each facility. The SIR compares the number of hospital-associated infections reported with the predicted number, considering the standard population (ie, the baseline per the National Healthcare Safety Network) and adjusting for several risk factors that are significantly associated with differences in infection incidence. In other words, an SIR greater than 1.0 indicates that more hospital-associated infections were observed than predicted; conversely, an SIR less than 1.0 indicates that fewer hospital-associated infections were observed than predicted.20

Preventing and treating constipation and diarrhea, and appropriately identifying active *C* difficile infection, are essential to maintaining patients’ overall health and recovery. Because of an increase in the identification of *C* difficile colonization (vs *C* difficile infection) and a decrease in the EN volume delivered to patients receiving EN, we developed a quality improvement EN team from among the larger intensive care unit (ICU) advisory committee; the team also included infectious disease specialists. Members of this interdisciplinary team researched, created, tested, and evaluated a flowchart that addressed constipation and diarrhea and inappropriate *C* difficile testing hospital-wide. The flowchart defines diarrhea and parameters for appropriate testing, and it eventually evolved into hospital policy. Nurses and providers can avoid inappropriate testing by answering questions about the consistency and frequency of stools, laxative use, and relevant symptoms. The primary aim of the project was to achieve, through the use of these protocol-based interventions, a goal of delivering at least 80% of prescribed EN; the secondary aim was to reach a hospital-onset *C* difficile SIR less than 0.7.

**Methods**

Participants comprised a convenience sample of both medical and surgical adult patients (≥ 18 years old) admitted to the critical care unit from January 1, 2016, through January 31, 2017. We included eligible patients who we anticipated would require EN support and who remained in the ICU for 72 hours or longer.

This study retrospectively investigated a before-and-after intervention. Registered dietitian nutritionists and a dietetic intern collected data from inpatients before protocol implementation, from January 1 to March 1, 2016. The constipation protocol was implemented in April 2016 and the diarrhea protocol in July 2016. Data were also collected after the protocols had been implemented, from September through January 2017. Patients were identified from daily Department of Food and Nutrition ICU census sheets. All patients who started receiving EN were considered eligible and were recorded on a tracking form. Once identified, a patient’s information was obtained from the electronic health record. Patients were retrospectively included in the project if they had orders for EN for at least 4 days (≥ 96 hours). Patients were excluded if they were transferred out of the ICU or did not have an order for at least 3 days of EN.

Enteral nutrition order information and start time, and the type of formula, were obtained from the electronic health record with each patient’s body mass index, weight at admission, and initial nutritional assessment by and recommendations from the registered dietitian nutritionist. We used documentation of intake and output to determine each patient’s total formula intake, receipt of propofol (for sedation), additional protein supplements, and GRV. All data were recorded in a spreadsheet.

Since January 2013, all acute care hospitals must report *C* difficile LabID events to the Centers for Medicare and Medicaid Services via the National Healthcare Safety Network. Thus data are robust regarding the identification of *C* difficile at our facility. Our hospital’s SIR increased from 0.710 in 2015 to 0.952 in 2016—a 34% increase. In 2016 a multidisciplinary team performed a root cause analysis of each hospital-onset event. Team members reviewed time lines to ascertain deficiencies in the testing process. A report was built in the electronic health record in order to identify pending orders for *C* difficile testing, thus allowing infection prevention team members to collaborate with nurses and providers caring for patients at the bedside to address potentially inappropriate testing before collecting specimens. A best practice alert was also built into the electronic health record to alert providers ordering a test for *C* difficile to review the administration of cathartics within the preceding 48 hours.

To evaluate nursing staff knowledge regarding care of patients receiving EN, a dietetic intern surveyed ICU
To standardize practices, algorithms were created with clear steps to address either constipation or diarrhea, or potential *C. difficile* infection. These algorithms were developed using a multidisciplinary approach that considered evidence-based practice guidelines and followed the format of current facility protocols to help guide providers and nurses in appropriately identifying diarrhea and testing for *C. difficile*. In addition, we reviewed published algorithms addressing these topics. Multipronged education on these new protocols was provided to nurses, nurse technicians, and providers. The provider and nursing algorithms were distributed throughout the inpatient units; infectious disease physicians presented during grand rounds.

**Figure 1** Constipation flowchart.
Abbreviations: APRN, advanced practice registered nurse; BM, bowel movement; MD, physician; NGT, nasogastric tube; PO, by mouth; PR, by rectum.
rounds and attended hospitalists’ meetings. Nurses received education on competency days, via electronic learning modules, and during daily safety huddles.

Data Analysis

We used SPSS software version 24.0 to perform statistical analysis. Data were cleaned and screened for outliers, missing values, and invalid values before being analyzed. The $\alpha$ level was less than 0.05 for all analyses. Descriptive analyses included frequency distributions for patient sex, age, and ethnicity and service team (medical or surgical). We analyzed continuous variables (body mass index, time since admission that EN was ordered, and number of days receiving EN) with descriptive statistics (mean, median, and range). We used an independent sample $t$ test for the continuous variables (changes in EN and tests for hospital-onset *C difficile*).

Results

We included in the analysis a total of 43 patients: 23 in the preprotocol group and 20 in the postprotocol group. Baseline characteristics were similar between the groups. Male sex was the only significantly different variable: the preprotocol group contained significantly more men (78%; $P = .046$) than did the postprotocol group. In the postprotocol group, the mean patient age was 65.7 years; 65% were female and 85% were white. Approximately 80% of the patients were on the medical service, while the other 20% were cared for by the surgical service, which is consistent with our daily census breakdown.

Patients in the preprotocol group received EN support for a mean of 4.2 days and received 69% of their ordered volume. Patients in the postprotocol group received EN support for a mean of 5.6 days and received 78% of their ordered volume. Although the postprotocol group did
not meet the goal of 80%, the EN volumes those patients did receive increased significantly ($t_{41} = 2.1836$; $P = .048$). Table 2 presents baseline demographic and clinical characteristics of ICU patients before and after the bowel protocol was implemented.

Fifteen nurses completed the EN survey. Survey results are presented in Table 3. One nurse reported that they hold EN if the GRV is greater than 200 mL, but all other nurses reported that they hold EN only if the GRV is greater than 300 mL, which is consistent
with the protocol in place. Five nurses reported that they were unaware that the policy stated to check GRV only with large-bore decompression tubes and not with small-bore feeding tubes. Two nurses reported that they knew not to check residuals with small-bore feeding tubes but they sometimes still do it out of habit (Table 3).

Root cause analyses of hospital-onset *C difficile* events indicated that 49% of events were due to late or inappropriate testing. By disseminating the *C difficile* testing algorithm to nurses and providers and proactively reviewing pending orders for *C difficile* testing, inappropriate testing was reduced by 54%. The SIR decreased from 1.290 in the third quarter of 2016 to 0.594 in the fourth quarter—a 46% reduction.

**Discussion**

Optimizing the delivery of EN while minimizing complications (constipation, *C difficile* infection, and diarrhea) is a fundamental issue when managing the care of critically ill adults. The implementation of constipation and diarrhea protocols was associated with significant improvements in goal EN caloric volumes to 78% (baseline 68%). Patients in the postprotocol group, however, did not meet the goal of receiving at least 80% of their prescribed target nutritional recommendations. These findings demonstrate a need for further education of the critical care unit staff and an updated protocol to improve EN therapy in ICU patients. The wide range of recommended calorie targets, with EN volumes at 70% to 100% of the target associated with improved survival in critically ill patients, warrants future exploration.

### Table 1

<table>
<thead>
<tr>
<th>Antidiarrheal agents added to the regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Add wheat dextrin (tube feedings): 4 g, 3 times daily or add psyllium (per mouth): 3.4 g, 3 times daily</td>
</tr>
<tr>
<td>2. Add loperamide: 4 mg once, then 2 mg after each loose stool (maximum 16 mg/day)</td>
</tr>
<tr>
<td>3. Add diphenoxylate/atropine: 2 tablets 3 or 4 times daily to start, then reduce dose</td>
</tr>
<tr>
<td>4. Change to peptide-based enteral feeding</td>
</tr>
</tbody>
</table>

### Table 2

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Before protocol (n=23)</th>
<th>After protocol (n=20)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>65.3 (44-82)</td>
<td>65.7 (48-86)</td>
<td>Not significant</td>
</tr>
<tr>
<td>Male sex, No. (%)</td>
<td>18 (78)</td>
<td>7 (35)</td>
<td>.046</td>
</tr>
<tr>
<td>Ethnicity, No. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White, non-Hispanic ethnicity</td>
<td>19 (82.6)</td>
<td>17 (85)</td>
<td>Not significant</td>
</tr>
<tr>
<td>Black, non-Hispanic</td>
<td>3 (13)</td>
<td>1 (5)</td>
<td>Not significant</td>
</tr>
<tr>
<td>White, Hispanic</td>
<td>1 (4.3)</td>
<td>2 (10)</td>
<td>Not significant</td>
</tr>
<tr>
<td>Body mass index,a mean (range)</td>
<td>26.4 (18-33)</td>
<td>27.4 (13-35)</td>
<td>Not significant</td>
</tr>
<tr>
<td>Medical service, No. (%)</td>
<td>17 (74)</td>
<td>16 (80)</td>
<td>Not significant</td>
</tr>
<tr>
<td>Time from admission to when enteral nutrition was ordered, h, mean (range)</td>
<td>68.1 (23.4-114.4)</td>
<td>58.6 (1-94)</td>
<td>Not significant</td>
</tr>
<tr>
<td>No. of days receiving enteral nutrition, mean (range)</td>
<td>5 (4-7)</td>
<td>5.6 (4-6)</td>
<td>Not significant</td>
</tr>
</tbody>
</table>

Abbreviation: IQR, interquartile range.

*a Body mass index is calculated as the weight divided by height in square meters.

### Table 3

<table>
<thead>
<tr>
<th>Survey questions</th>
<th>Responses (n=15), No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are you familiar with the current EN protocol?</td>
<td>12 Yes</td>
</tr>
<tr>
<td>Do you check GRVs in patients who have small-bore feeding tubes?</td>
<td>5 Yes</td>
</tr>
<tr>
<td>Do you chart EN shift totals in the IView section of the EHR?</td>
<td>15 Yes</td>
</tr>
<tr>
<td>Do you chart EN shift totals in the intake and output flow sheet section of the EHR?</td>
<td>15 Yes</td>
</tr>
<tr>
<td>How many years have you been an ICU nurse?</td>
<td>11 (range 3-30) y</td>
</tr>
</tbody>
</table>

Abbreviations: EHR, electronic health record; EN, enteral nutrition; GRV, gastric residual volume; ICU, intensive care unit.
Although the primary quality improvement project focused on increasing the delivery of EN volumes by implementing bowel protocols, we identified a secondary opportunity to clarify procedures for *C. difficile* testing. We implemented an algorithm and best practice alert and we educated staff during the course of this project. We achieved significant results in decreasing inappropriate *C. difficile* testing. This decrease in inappropriate testing is important, as fewer inappropriately diagnosed *C. difficile* infections provide substantial benefits to the institution. Providers did not stop ordering *C. difficile* tests, but the orders were more appropriate (eg, based on timing and symptoms) after they received the education. Resulting benefits to the institution included improvements in quality and safety, and cost savings. These improvements, in turn, improve patient satisfaction and safety. Currently, enteric precautions are used for patients identified as being infected with *C. difficile,* necessitating a private room and the use of personal protective equipment by both staff and visitors. These requirements can cause patients to feel isolated and involve more facility resources, including employee time and supplies.

**Limitations**

Limitations to this quality improvement initiative include the small sample size, which limited our ability to draw from the statistical analysis robust conclusions regarding the effect of the protocols. The small numbers of patients were due to several factors, including the short period of data collection (6 months), patient transfers out of the ICU before completing the 4-day EN period, or orders for fewer than 4 days of active EN.

Documentation of complete enteral information was inconsistent in the electronic health record. Patients were excluded from the analysis if EN volume data were missing from a shift. Because data collection was retrospective, it is unclear whether the data were simply not documented or whether EN had been stopped for part of a day for medical reasons. Because we initially focused on improving enteral volume delivery, data were not collected on timing and the number of bowel movements or the specific bowel medications used.

The survey of ICU registered nurses, which assessed their knowledge of existing EN policy, was limited to those nurses working the day shift. Future surveys should also include staff working night and weekend shifts.

Potential next steps include revising the facility EN protocol, as new guidelines now recommend no longer checking GRV, and collecting additional data that include specifics on patient bowel movements and concurrent medication administration. Studies that use bowel protocols among larger sample sizes are warranted.

**Conclusion**

At one institution, implementation of constipation and diarrhea protocols significantly improved EN delivery, which approached the target level. Associated education and implementation of *C. difficile* testing protocols decreased the number of hospital-onset *C. difficile* infections. Bowel protocols and flowcharts can improve patient safety and facilitate positive patient outcomes.

**Acknowledgments**

The authors thank all staff in the Hospital of Central Connecticut Critical Care Unit; Kelly Williams, a dietetic intern at the University of Connecticut; and Virginia Bieluch, MD, Director of Infectious Disease at the Hospital of Central Connecticut.

**Financial Disclosures**

This project was partially funded by a Nestlé ENAct Quality Improvement Nutrition Grant.

**See also**


**References**

10. van der Spool JI, Oudemans-van Straaten HM, Kuiper MA, van Roon EN, Zandstra DF, van der Voort PH. Laxation of critically ill patients.


