Follow the water: Connecting a CO₂ reservoir and bleached sandstone to iron-rich concretions in the Navajo Sandstone of south-central Utah, USA

Richard M. Kettler¹, David B. Loope**, and Karrie A. Weber¹,²
¹Department of Earth & Atmospheric Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
²School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA

Chan et al. (2005) hypothesized that rinded concretions in the Navajo Sandstone are de novo mixing products of oxidized and reduced fluids. Dana (1896) described similar rinded concretions that also showed evidence of inward thickening, terming them centripetal structures. We argue these concretions had siderite precursors and that the reduced and oxidized mineral phases reflect groundwater chemistry that shifted from reducing to oxidizing as CO₂ and CH₄ were swept from the Navajo reservoir in the Escalante anticline.

OBSERVATION AND MINERALOGICAL ANALYSIS

We are not surprised that Chan et al. (2011) did not find Fe(II) in the bands of cement that comprise the rinds. These inward-thickening bands formed when Fe(II) migrated to the perimeter of siderite-cemented concretion cores, precipitating as Fe(III)-oxide minerals (Loope et al., 2010). We have found abundant siderite pseudomorphs in the interiors of the largest iron-oxide concretions in the Navajo (Loope et al., 2011). Unlike the Fe-oxide minerals in the rinds, the Fe-oxides in the pseudomorphs formed by replacement of siderite crystals.

We wouldn’t expect petrographic relationships to show that Fe(III) oxides and Fe(II) carbonates precipitated in equilibrium. Joint-associated, poikilotropic ferrocalcite concretions are abundant in the southeastern portion of our study area—indeed independent evidence for a Navajo aquifer that was reducing and carrying both Fe(II) and CO₂ in solution.

GEOCHEMICAL ARGUMENTS

Goethite and lepidocrocite are known products of siderite oxidation (Cornell and Schwertmann, 2003; p. 361), and lepidocrocite precipitation is inhibited only at high HCO₃⁻ concentrations (Cornell and Schwertmann, 2003, their figure 13.7). A halo of lepidocrocite around the concretions (Parry, 2011) is fully consistent with our model.

We cannot evaluate Chan et al.’s (2011) statement regarding geochemical calculations—the relevant geochemical variables (P, T, X) are not specified—but the comment is a reasonable description of the bleaching and Fe(II) transport events we described. Bleaching will only occur if “primary” Fe(III)-oxide phases in the Navajo aquifer are under-saturated. We contend that the reduction of Fe(III) occurred prior to siderite precipitation; Fe(II) was transported down-gradient to sites of siderite precipitation.

It is possible that Fe(II) remaining in aqueous solution (after siderite precipitation) was oxidized down-dip, but much of it precipitated as the poikilotropic ferro-carbonate concretions that we mapped (Loope et al., 2010). It certainly would have been oxidized as it flowed out of the Navajo aquifer into the ancestral Colorado River. The chemistry of a solution is controlled by the values of P, T, and X (not by the values those variables will hold in the future).

Contrary to Chan et al. (2011), Parry et al. (2009) did not report siderite from the Covenant oil field. Siderite was used only as a geochemical construct.

The absence of siderite in spring precipitates is to be expected. Fe(II) transported by such systems precipitates as Fe(III)-oxide (Shipton et al., 2004). These springs provide direct evidence of Fe(II) transport in the Navajo aquifer by CO₂-charged solutions.

FIELD CONTEXT

Northwest-to-southeast orientation of comet tails (Loope et al., 2010) shows that Fe was transported down-dip. This fluid was not buoyant. Chan et al.’s (2011) statement, “the fact that aqueous fluids with even a small amount of dissolved CO₂ and CH₄ are less dense than fluids without the dissolved gases” is incorrect for nearly all PTX space. Both CO₂ and CH₄ are relatively insoluble in water; they do not form hydrogen bonds with adjacent water molecules. In general, dissolution of CH₄ in liquid water will decrease the density of the solution whereas dissolution of CO₂ causes solution density to increase (Neufeld et al., 2010). The tendency of aqueous solutions to become more dense upon dissolution of CO₂ allowed it (and CH₄) to accumulate in the bottom waters of Lake Nyos, eventually leading to the gaseous eruption that killed 1700 people in 1986 (Giggenbach, 1990). Methane is relatively insoluble in low-temperature waters compared to CO₂ (e.g., Cui et al., 2004); thus, CH₄-dominant waters will only be produced if the gas with which the solution is in equilibrium has a CH₄:CO₂ ratio greater than ~20:1.

Chan et al. (2011) state that joints in the study area formed 23.3 m.y. ago, but their references indicate this is just the oldest possible age of the joints—the beginning of the Miocene. Further, the precise age of the joints is moot because the geochemical trap that led to Fe precipitation required fracture continuity to the surface and appropriate hydraulic pressure—conditions that could have developed any time after fracturing.

REFERENCES CITED

© 2011 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org.

GEOL OGY FORUM, November 2011

e251