Carbon sequestration on Mars

Christopher S. Edwards1 and Bethany L. Ehlmann2,3
1Astrogeology Science Center, U.S. Geological Survey, Flagstaff, Arizona 86001, USA
2California Institute of Technology, 1200 E. California Boulevard, MC 150-21, Pasadena, California 91125, USA
3Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California 91109, USA

Martian atmospheric pressure has important implications for the past and present habitability of the planet, including the timing and causes of environmental change. The ancient Martian surface is strewn with evidence for early water bound in minerals (e.g., Ehlmann and Edwards, 2014) and recorded in surface features such as large catastrophically created outflow channels (e.g., Carr, 1979), valley networks (Hynek et al., 2010; Irwin et al., 2005), and crater lakes (e.g., Fassett and Head, 2008). Using orbital spectral data sets coupled with geologic maps and a set of numerical spectral analysis models, Edwards and Ehlmann (2015) constrained the amount of atmospheric sequestration in early Martian rocks and found that the majority of this sequestration occurred prior to the formation of the early Hesperian/late Noachian valley networks (Fassett and Head, 2011; Hynek et al., 2010), thus implying the atmosphere was already thin by the time these surface-water-related features were formed.

As Lee et al. (2016) rightly highlight in their Comment, the meteorite record provides important constraints on Martian carbon sequestration processes. The example used in the discussion by Edwards and Ehlmann of the possibility of deep diffuse carbonate alteration—rather than precipitation of carbonate in discrete rock deposits like those analyzed—was selected based on measurements of carbonate in dust, in-situ mission data, and meteorites. That is, a 1 km global crustal layer of 1 vol.% carbonate-bearing materials, similar to the abundances in the Nakhlite-class Lafayette meteorite (Changela and Bridges, 2010; Nyquist et al., 2001; Tomkinson et al., 2013; Wright et al., 1992), if formed from waters in contact with the atmosphere, would lead to sequestration of ~500 mbar CO2.

To sequester significantly more carbon than this from the Martian atmosphere requires an assumption that typical Martian rocks and soils have vol.% carbonate several factors greater than that observed in Martian meteorites. Abundances as high as this would be more readily detectable to remote sensing and landed missions, but are so far observed only rarely or at abundances of a few percent or less (e.g., Leshin et al., 2013; Lee, 2016; Tomkinson et al., 2013). The example provided in the Comment is consistent with these observations.

As noted in the discussion, carbonate-bearing materials, similar to the abundances in the Nakhlite-class Lafayette meteorite (Changela and Bridges, 2010; Nyquist et al., 2001; Tomkinson et al., 2013; Wright et al., 1992), if formed from waters in contact with the atmosphere, would lead to sequestration of ~500 mbar CO2.

To sequester significantly more carbon than this from the Martian atmosphere requires an assumption that typical Martian rocks and soils have vol.% carbonate several factors greater than that observed in Martian meteorites. Abundances as high as this would be more readily detectable to remote sensing and landed missions, but are so far observed only rarely or at abundances of a few percent or less (e.g., Leshin et al., 2013; Lee, 2016; Tomkinson et al., 2013). The example provided in the Comment is consistent with these observations.

As noted in the discussion, carbonate-bearing materials, similar to the abundances in the Nakhlite-class Lafayette meteorite (Changela and Bridges, 2010; Nyquist et al., 2001; Tomkinson et al., 2013; Wright et al., 1992), if formed from waters in contact with the atmosphere, would lead to sequestration of ~500 mbar CO2.

To sequester significantly more carbon than this from the Martian atmosphere requires an assumption that typical Martian rocks and soils have vol.% carbonate several factors greater than that observed in Martian meteorites. Abundances as high as this would be more readily detectable to remote sensing and landed missions, but are so far observed only rarely or at abundances of a few percent or less (e.g., Leshin et al., 2013; Lee, 2016; Tomkinson et al., 2013). The example provided in the Comment is consistent with these observations.

As noted in the discussion, carbonate-bearing materials, similar to the abundances in the Nakhlite-class Lafayette meteorite (Changela and Bridges, 2010; Nyquist et al., 2001; Tomkinson et al., 2013; Wright et al., 1992), if formed from waters in contact with the atmosphere, would lead to sequestration of ~500 mbar CO2.

To sequester significantly more carbon than this from the Martian atmosphere requires an assumption that typical Martian rocks and soils have vol.% carbonate several factors greater than that observed in Martian meteorites. Abundances as high as this would be more readily detectable to remote sensing and landed missions, but are so far observed only rarely or at abundances of a few percent or less (e.g., Leshin et al., 2013; Lee, 2016; Tomkinson et al., 2013). The example provided in the Comment is consistent with these observations.

As noted in the discussion, carbonate-bearing materials, similar to the abundances in the Nakhlite-class Lafayette meteorite (Changela and Bridges, 2010; Nyquist et al., 2001; Tomkinson et al., 2013; Wright et al., 1992), if formed from waters in contact with the atmosphere, would lead to sequestration of ~500 mbar CO2.