Tropical weathering of the Taconic orogeny (i.e., “orogen”) as a driver for Ordovician cooling

Ed Landing
New York State Museum, 222 Madison Avenue, Albany, New York 12230, USA

Swanson-Hysell and Macdonald (2017) follow Kump et al.’s (1999) proposal that decreasing temperatures through the Ordovician (e.g., Trotter et al., 2008) are largely explained by CO₂ sequestration with weathering of silicates exposed by Taconic arc-Laurentia collision. They propose higher weatherability of the west-east–trending Taconic orogen that they shift to a more equatorial, wet-tropical setting. The concerns that may be raised by a reader are whether the following are all responses to this orogeny: (1) the Ordovician temperature record, (2) the strontium and neodymium isotope record interpreted to reflect the Taconic orogeny (Swanson-Hysell and Macdonald, 2017), and (3) the interpreted pCO₂.

The amount and rate of CO₂ sequestration with weathering of obducted Taconic mafics and ultramafics likely do not have an analog in the late Cretaceous and early Eocene arcs discussed by Jagoutz et al. (2016). The Taconic arc system had an ~4500 km length (i.e., Alabama–west Newfoundland–northern Irish–Scottish Grampian orogen). Continuation of Taconic arcs past Greenland (Swanson-Hysell and Macdonald’s figure 1) is speculative as east Greenland was not part of the Taconic orogen and northern Ellesmere Island (Pearya terrane) and Southwest Svalbard likely form the northern Caledonides (Cocks and Torsvik, 2011). Although the Taconic orogen is comparable in length with the subduction complexes discussed by Jagoutz et al. (2016), it is possible, following the Kump et al. (1999) and Swanson-Hysell and Macdonald’s syntheses, that weathering of Taconic arc successions and sequestration of CO₂ would have decreased global temperatures? This question is appropriate, as Taconic mafic and ultramafic bodies are isolated and small (~25 km wide in the Bay of Islands Complex) (Williams and Talkington, 1977) and do not reach the size (up to 200 km wide) that allowed great CO₂ consumption with weathering of the Neo-Tethyan arcs (Jagoutz et al., 2016).

Except for terminal Ordovician glaciation, most of the period featured a climate maximum (e.g., Sheehan, 2001). This meant warm, humid conditions across a wider range of latitudes, as shallow epeiric seas with high insolation overlapped reflective continents and led to high levels of continental weathering (e.g., Young et al., 2009). These Sr-ratios would not have reflected arc erosion (contra Swanson-Hysell and Macdonald, 2017), More positive 86Sr/87Sr at 460 Ma is also consistent with eustatic rise and diminished weathering of Precambrian basement, and not necessarily arc erosion. That “arc exhumation” and arc-continent collision took place at 460 Ma (Swanson-Hysell and Macdonald, 2017) may be not consistent with the active explosive, 460–450 Ma volcanism recorded in central Laurentia (Huff et al., 2010) that suggests arc-continent collision was not completed by 460 Ma.

An alternative interpretation that changes in pCO₂ controlled global temperature is that the Ordovician temperature curve records major eustatic level changes in the Tremadocian, late Darriwillian, and Katian stages. The cause of very low latest Ordovician temperatures would be increased albedo with low eustatic levels and Gondwana ice cap development.

REFERENCES CITED


© 2018 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org.