Late Closure of Argon Laser Iridotomies Following Regrowth of Iris Pigment Epithelium

Closure of previously patent laser iridotomies has been described as occurring early or late after the procedure. Early closure, occurring from minutes to hours after completion of the iridotomy, results from landsliding of iris pigment epithelium from above the site of the iridotomy or from large pigment particles floating in the posterior chamber, lodging in the iridotomy site, and occluding it. Late closure may occur due to occlusion by the settling of dispersed pigment and/or inflammatory debris into a small iridotomy and/or proliferation of pigment with bridging of the iridotomy and usually occurs after days to weeks. In most cases, this pigment appears to come from the stroma, and the pigment plugging of the iridotomy is anatomically at the level of the iris stroma. Iris pigment epithelial proliferation has been considered extremely rare and to our knowledge has not been previously described after laser iridotomy.

Report of Cases. Case 1. A 57-year-old man underwent argon laser iridotomy in his right eye for appositional angle closure. Postsurgery, the angles were grade 2 and grade 3 open. The iridotomy was noted to be closed by iris pigment epithelial regrowth 30 months later. There was no filling of the stromal defect, which remained fully patent (Figure 1, left). Gonioscopy revealed 180° of appositional closure, while the remainder of the angle was grade slit-1. This was confirmed by ultrasound biomicroscopy (UBM; Paradigm Medical Laboratories Inc, Salt Lake City, Utah) (Figure 1, right). The pigment was easily dispersed with a few bursts of low energy argon laser, and the iridotomy has remained patent for 5 years without iris pigment epithelial regrowth.

Case 2. A 71-year-old women with angle-closure glaucoma underwent argon laser iridotomy in her left eye. Postsurgery, the iridotomy was patent, and the angle was grade 3. Four months later, iris pigment epithelial regrowth was noted to occlude the iridotomy site and the angle was narrow (Figure 2). A touch-up laser procedure was performed, following which the iridotomy has remained patent.

Comment. Pigment proliferation has been implicated in closure of iridotomies created by both argon and Nd:YAG lasers but is more commonly seen with those made with the argon laser. What has been termed late closure classically occurs anatomically at the level of the iris stroma within a few weeks to months after the procedure. This type of closure rarely occurs after the iridotomy has been patent for longer. It is not really clear whether this proliferation is of pigment epithelium or stromal pigment or both. Thermal drainage to the iris pigment epithelium surrounding the iridotomy may be responsible.

Our cases differ from these findings. The first patient had an iridotomy that was functioning and patent until regrowth of iris pigment epithelium 21/2 years later. The second had closure of the iridotomy approximately 4 months postsurgery. In both cases, ultrasound biomicroscopy was able to demonstrate occlusion of the iridotomy solely at the iris pigment epithelial level with no filling of the stromal defect. In eyes with late closure of the iridotomy due to true iris pigment epithelial regrowth, the cells proliferate into the opening from the en-
tire circumference of the iridotomy toward its center (Figure 3).

Linda Oon-Cheng Teoh, FRCS
Hiroshi Ishikawa, MD
Jeffrey M. Liebmann, MD
Robert Ritch, MD
New York, NY

This study was supported in part by the Irving and Rena Katz Research Fund of the New York Glaucoma Research Institute, New York, NY.

Dr Teoh is currently affiliated with Tun Hussein Onn National Eye Hospital, Petaling Jaya, Selangor, Malaysia.

Reprints: Robert Ritch, MD, Glaucoma Service, Department of Ophthalmology, The New York Eye and Ear Infirmary, 310 E 14th St, New York, NY 10003 (e-mail: ritch@inx.net).

Malignant Melanoma Arising From a Large Uveal Melanocytoma in a Patient With Oculodermal Melanocytosis

A 51-year-old man with ocular melanocytosis was seen with a pigmented uveal mass that extended from the iris to the macular region in the ipsilateral left eye. Diffuse uveal melanoma was suspected, and multiple foci of extrascleral pigment were discovered at enucleation. Histopathologically, the lesion was a diffuse uveal tumor composed mostly of cells identical to a melanocytoma. In the center of the mass was an island of amelanotic malignant melanoma cells. The extraocular component was consistent with benign melanocytoma. The patient is alive and well after 20 years. Based on observations in this case, we discuss the relationship between ocular melanocytosis and melanocytoma and emphasize that they may represent different clinical expressions of the same congenital pigmentary abnormality.

Ocular melanocytosis is a congenital condition characterized by hyperpigmentation of the uveal tract, sclera, and episcera. When the pericorneal skin is involved, it is termed ocular melanocytosis or nevus of Ota. Melanocytoma is a deeply pigmented variant of uveal nevus that was originally described in the optic disc but is now known to occur in all parts of the uveal tract. Although both ocular melanocytosis and melanocytoma can give rise to uveal melanoma, there has been a tendency among ophthalmologists to consider them as different entities. We describe a patient with ocular melanocytosis and a large diffuse uveal melanocytoma that gave rise to melanoma.

Report of a Case. In April 1979, a 51-year-old white man was referred to one of us (J.A.S.) because of a pigmented lesion in his left eye. His visual acuity was 20/15 OS and intraocular pressure was 8 mm Hg OU. The right eye was normal. The patient had a congenital cutaneous blue nevus, 2 cm in diameter, near the lateral aspect of the left eyebrow but not periocular cutaneous pigmentation. There were several well-defined patches of gray pigmentation on the sclera inferiorly (Figure 1). A dark brown lesion was present in the iris inferotemporally (Figure 2). Gonioscopy revealed that the inferior aspect of the trabecular meshwork was deeply pigmented.

Findings from fundus examination disclosed a pigmented, sectorial, inferotemporal ciliochoroidal mass that measured 15 mm in diameter and 8 mm in thickness. It was contiguous with the pigmented lesion of the iris and trabecular meshwork. The remainder of the choroid inferiorly was deeply pigmented with extension of the flat pigmentation into the central macular region (Figure 3). Fluorescein angiography of the mass demonstrated relative hypofluorescence in the venous phase and mild late hyperfluorescence. A-scan ultrasonography showed a solid mass with
gradually diminishing internal reflectivity, and B-scan ultrasonography showed a peripheral choroidal mass with low internal reflectivity.

Based on clinical findings and ancillary studies, our diagnosis was ocular melanocytosis with sector uveal melanocytosis, giving rise to diffuse choroidal melanoma, and enucleation was advised. Inspection of the globe immediately after enucleation disclosed multiple, deeply pigmented nodules on the posterior aspect of the globe inferotemporally and around the optic nerve (Figure 4).

Pathologic Findings. The sectioned globe showed a diffuse, elevated, deeply pigmented uveal mass, measuring 20 × 20 × 8 mm in the inferotemporal quadrant with patches of black pigmentation in the corresponding episcleral tissue.

Figure 1. Foci of episcleral pigmentation inferiorly. Note the associated sentinel vessel.

Figure 2. Pigmented lesion of iris inferotemporally. There is also contiguous pigment in the peripheral iris and anterior chamber angle.

Figure 3. Wide-angle fundus photograph showing nodular inferior uveal mass with flat extension around the optic disc and beneath the macular region.

Figure 4. Photograph of globe immediately after enucleation showing deeply pigmented episcleral nodules posteriorly.

Figure 5. Gross appearance of sectioned eye showing large diffuse uveal mass with black transcleral and episcleral pigment.
(Figure 5). Low magnification microscopy showed cystic degeneration in the peripheral part of the pigmented choroidal mass and a large focus of depigmentation in the postequatorial region (Figure 6). Review of bleached sections showed that the deeply pigmented portions of tumor and the extrascleral nodules were composed of bland, ovoid cells with uniform small nuclei, compatible with the diagnosis of ocular melanocytosis or melanocytoma (Figure 7). In contrast, the less pigmented foci were composed of spindle cells and a few epithelioid cells, compatible with a mixed-cell type melanoma (Figure 8). No mitotic activity was identified in the numerous sections studied.

Based on the clinical and histopathologic findings, the diagnosis was ocular melanocytosis with segmental uveal melanocytosis forming a melanocytoma with foci of amelanotic choroidal melanoma. The patient is alive and well after 20 years with no local recurrence or metastasis.

Comment. Although it was originally described as a lesion of the optic disc, melanocytoma subsequently has been recognized to occur in the uveal tract, including the iris, ciliary body, and choroid. Patients with ocular melanocytosis have an increased risk of developing uveal melanoma. Zimmerman has stressed the microscopic similarities shared by ocular melanocytosis and melanocytoma of the optic disc. He coined the term melanocytoma for the pigmented lesions of the optic disc because he observed that...
the cells comprising such lesions were nearly identical to the cells that diffusely involve the uveal tract in ocular melanocytosis.²

Based on our experience, we believe that most ophthalmologists consider melanocytoma and ocular melanocytosis to be 2 distinctly different pigmentary conditions. However, in our practice of ocular oncology, we have seen patients who had a melanocytoma of the optic disc that was contiguous with a widespread area of choroidal pigmentation identical to the choroidal changes of ocular melanocytosis.

Our belief that melanocytosis and melanocytoma represent different expressions of the same congenital pigmentary process is also supported by the case reported here. Our patient, who had ocular melanocytosis, also had marked uveal thickening, which was composed of cells identical to those seen in melanocytoma. In 1986, Haas et al¹⁴ reported a similar case in a 10-year-old boy. They also observed that the cells that comprised the choroidal thickening were identical to those seen in a melanocytoma of the optic disc. In contrast to our case, the tumor in their patient did not have histopathologic evidence of a malignant component.

We believe that there is a variant of ocular melanocytosis characterized by marked thickening of the uveal tract by cells that have features typical of those seen with melanocytoma of the optic disc. This large uveal melanocytoma can undergo malignant transformation into melanoma, as shown in our case. A curious feature of this malignant transformation is that the malignant portion is only minimally pigmented whereas the primary benign lesion is deeply pigmented. We have documented 2 other cases in which a clone of relatively amelanotic melanoma cells was present in a deeply pigmented melanocytoma of the ciliary body.

In summary, our patient with ocular melanocytosis was atypical in that the uveal tract was markedly thickened and assumed tumorous proportions. The deeply pigmented uveal mass was composed of cells identical to those found in melanocytoma of the optic nerve. The melanocytosis contained an area of malignant transformation into amelanotic melanoma cells. The patient is alive and well after 20 years, suggesting that he may have a favorable prognosis. This unusual case underscores the similarity between ocular melanocytosis and melanocytoma and suggests that they may represent variations of the same entity.

Jerry A. Shields, MD
Carol L. Shields, MD
Ralph C. Eagle, Jr, MD
Carmen Santos, MD
Arun D. Singh, MD
Philadelphia, Pa

This study was supported in part by the Eye Tumor Research Foundation, Philadelphia, Pa; the Paul Kayser Award of Merit in Retina Research, Houston, Tex (Dr J. Shields); the Macula Foundation, New York, NY (Dr C. Shields); CAPES, Brasilia, Brazil (MCMS) (Dr Santos); and the Noel T. and Sarah L. Simmons Endowment for Ophthalmic Pathology, Wills Eye Hospital, Philadelphia (Dr Eagle).

SUMMARY

This 10-year-old boy had a melanocytoma of the optic disc. In contrast to our case, the tumor in their patient did not have histopathologic evidence of a malignant component. We believe that melanocytosis contains an area of malignant transformation into amelanotic melanoma cells. The patient is alive and well after 20 years, suggesting that he may have a favorable prognosis. This unusual case underscores the similarity between ocular melanocytosis and melanocytoma and suggests that they may represent variations of the same entity.
secondary to a foreign body that localized to the infratemporal fossa. There are several unanswered questions about the ultimate source of the foreign body. However, this case stresses the importance of a broad differential diagnosis and the choice of imaging modality in children.

On examination, the patient was afebrile and in no distress. Visual acuity was 20/20 OU without correction. There was no globe malposition subjectively or by exophthalmometry. There was a firm, minimally tender immobile mass that was continuous with the left zygoma by palpation. The skin medial to the lesion had a violet discoloration (Figure 1). The subacute presentation without constitutional signs increased our suspicion of a primary malignant neoplasm of either the bone or soft tissue, as opposed to a noninfectious inflammatory process.

A computed tomographic scan of the head and orbit was obtained. It revealed a soft tissue lesion surrounding the left lateral orbit with extension into the infratemporal fossa. Additionally, there was hyperostosis of the left frontozygomatic arch (Figure 2, top). Within the infratemporal fossa extending to the superior alveolar ridge, there was a high-density foreign body that was contiguous with the soft tissue density (Figure 2, bottom). Subsequent examination of the oral cavity demonstrated a pyogenic granuloma in the buccal sulcus at the left level of the first upper molar (Figure 3).

The patient underwent a left anterior orbitotomy to explore the region of the inferolateral orbital rim corresponding to the region of clinical involvement and to further evaluate the abnormality seen on the computed tomographic scan. A fibrous soft tissue mass overlying the orbital rim was removed. Incision into the mass produced a scant exudate. The underlying periosteum of the zygoma was thickened. Through intraoral blunt dissection of the pyogenic granuloma and reflection of the periosteum of the maxilla, a 24-mm, metallic, cylindrical for-
eign body was located on the anterolateral face of the maxilla and removed (Figure 4). The cavity was copiously irrigated and a Penrose drain was temporarily left in place exiting into the mouth. Intraoperatively, cefazolin was administered intravenously and followed with a postoperative course of oral amoxicillin. Review of the frozen and permanent pathological specimens revealed fibrotic tissue with chronic inflammation and reactive woven bone formation.

The postoperative course was uneventful. At 5 months, there was no suggestion of recurrence and the mouth was well healed. Further questioning of the child and family did not glean insight into the source of the foreign body. The case social worker and pediatrician found no evidence of child abuse.

Comment. To our knowledge, this case represents the first report of an infratemporal foreign body presenting as an inferior orbital mass. There are several cases of foreign bodies in this region presenting with trismus and acute inflammation. However, these cases have been associated with a known direct injury (ie, broken pen tip from stabbing). We speculate that entry to the infratemporal fossa was via the buccal sulcus.

Despite a thorough multidisciplinary inquiry, the exact mechanism of injury could not be ascertained. Without invoking alien intervention, our best working hypothesis is that this pinlike foreign body may have become imbedded in the child’s face during a lacerating sledding accident 2 years prior to presentation. The foreign body may have been lodged within the epicenter of the perizygomatic mass seen on computed tomography. The relatively minor trauma sustained 2 months prior to presentation may have dislodged the foreign body. Disruption of the reactive fibrous capsule may have permitted leakage of its contents, resulting in the low-grade inflammatory picture seen on presentation.

This case is instructive on several levels. Foreign bodies should be considered in the differential of all orbital and periorbital mass lesions, especially in children, who are notoriously poor historians. Accordingly, the choice of initial radiological imaging should attempt to rule out the existence of such material. Also, in very rare cases, oral examination may provide insight into the origin of lesions presenting in the periorbital region.

Calvin A. Grant, MD
Peter A. D. Rubin, MD, FACS
Boston, Mass

Corresponding author: Peter A. D. Rubin, Department of Ophthalmology, Ophthalmic Plastics, Orbital and Cosmetic Surgery, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles St, Boston, MA 02114.