Nuclear Receptor Coregulators: Cellular and Molecular Biology*

NEIL J. MCKENNA, RAINER B. LANZ, AND BERT W. O’MALLEY

Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030

I. Introduction

NUCLEAR receptor coregulators are coactivators or corepressors that are required by nuclear receptors for efficient transcriptional regulation. In this context, we define coactivators, broadly, as molecules that interact with nuclear receptors and enhance their transactivation. Analogously, we refer to nuclear receptor corepressors as factors that interact with nuclear receptors and lower the transcription rate at their target genes. Most coregulators are, by definition, rate limiting for nuclear receptor activation and repression, but do not significantly alter basal transcription. Recent data have indicated multiple modes of action of coregulators, including direct interactions with basal transcription factors and covalent modification of histones and other proteins. Reflecting this functional diversity, many coregulators exist in distinct steady state precomplexes, which are thought to associate in promoter-specific configurations. In addition, these factors may function as molecular gates to enable integration of diverse signal transduction pathways at nuclear receptor-regulated promoters. This review will summarize selected aspects of our current knowledge of the cellular and molecular biology of nuclear receptor coregulators.

Address reprint requests to: Bert W. O’Malley, M.D., Department of Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 USA. E-mail: berto@bcm.tmc.edu

* Research described in this review was supported by a United States Army Breast Cancer Postdoctoral Award (to N.J.McK.); a Swiss National Foundation Fellowship (to R.B.L.); and by NIH and NICHD Grants (to B.W.O.).

A. The nuclear receptor superfamily

Nuclear receptors are ligand-inducible transcription factors that specifically regulate the expression of target genes involved in metabolism, development, and reproduction. Their primary function is to mediate the transcriptional response in target cells to hormones such as the sex steroids (progestins, estrogens, and androgens), adrenal steroids (glucocorticoids and mineralocorticoids), vitamin D₃, and thyroid and retinoid (9-cis and all-trans) hormones, in addition to a variety of other metabolic ligands. More than 100 nuclear receptors are known to exist, and, together, these proteins comprise the single largest family of metazoan transcription factors, the nuclear receptor superfamily.

Even the briefest consideration of research on the nuclear receptor superfamily affords an appreciation of its global importance in cellular signaling and differentiation. Seminal studies in the 1960s identified the estrogen receptor (ER), and the general pathway for steroid hormone action was subsequently elucidated. Numerous subsequent studies led to the belief that steroid receptors act at the level of DNA to enhance recruitment of the preinitiation complex of general transcription factors (GTFs) at target promoters. The cloning in the mid- to late 1980s of cDNAs encoding many of the receptors prefaced their designation, on the basis of extensive amino acid sequence identity, as an evolutionarily related family of proteins. Phylogenetic analysis has identified several subfamilies within this superfamily: type I (“classical” or “steroid”) receptors include those for progestins (PR), estrogens (ER), androgens (AR), glucocorticoids (GR), and mineralocorticoids (MR), whereas type II receptors encompass those for thyroid hormone (TR), all-trans retinoic acid (RAR), 9-cis retinoic acid (RXR), and vitamin D₃ (VDR). A third subclass contains orphan receptors, for which ligands are only now being characterized. Although they have common structural features, divergence of the steroid and thyroid/retinoid/vitamin D₃ receptor subclasses is supported by differences in their functional characteristics, as well as by their discrepant recognition of cis-acting hormone response elements. Type I receptors, in the absence of ligand, are sequestered in nonproductive associations with heat shock proteins and, in this state, are not thought to influence the rate of transcription of their cognate promoters. Conversely, type II receptors are able to bind DNA in the absence of ligand and often exert a repressive effect upon the activity of their subject promoters, a phenomenon referred to as silencing (1). Type I receptors bind to palindromic repeats in a homodimeric head-to-head arrangement only in the presence of ligand, whereas type II...
receptors bind constitutively to response elements that contain direct repeats. In addition, type II receptors exhibit promiscuous dimerization patterns, many involving heterodimerization with RXR, and such interactions may serve to modulate the amplitude of the transcriptional response to ligand.

Meticulous domain-mapping experiments have identified a number of functional domains now designated as defining structural features of members of the nuclear receptor superfamily. For a detailed discussion of these domains, the reader is referred to Tsai and O’Malley (1) and references therein. Broadly, the receptor structure is comprised of: an amino-terminal activation function, AF-1 (A/B domain); the DNA-binding domain (DBD) (C); a hinge region (D); and a carboxy-terminal ligand-binding domain (LBD) (E). Muta-
tional analysis of the E domain led to the designation of a second activation function, AF-2, which is indispensable for proper ligand-dependent activation by nuclear receptors (2–4). Other functions have been ascribed to the E domain, including ligand binding (5), heat shock protein (hsp) inter-
actions (6), and nuclear localization (7). These functional domains reflect a intricate, but well characterized, ligand-mediated receptor activation pathway (Fig. 1). This multistep process involves activation of receptor by binding of the cognate hormone, a change in receptor structure and disso-
ciation of several heat shock proteins, nuclear translocation of the activated receptor (in the case of GR, MR, AR, and PR), and dimerization and apposition of the transformed receptor to its DNA response elements. Rather less well characterized though, is the sequence of events by which the activated, DNA-bound receptor achieves transcriptional regulation. While the role of GTFs in mediating basal transcription is well documented (see Section I.B below), it has recently become clear that nuclear receptors recruit a host of ancillary factors (coregulators) that 1) create, depending upon the activation state of the receptor, a transcriptionally permissive, or nonpermissive environment at the promoter and 2) communicate with the GTFs and RNA Pol II.

B. General transcription factors (GTFs)

The entire sequence of events leading to the assembly of a preinitiation complex of GTFs at enhancer-controlled pro-
moters is beyond the scope of this chapter. For a thorough discussion of eukaryotic transcriptional initiation, the reader is referred to selected reviews (8, 9). Steroid and thyroid/retinoid hormones regulate transcription via enhancer ele-
ments that may be several kilobases from their target promoters, at which transcription is mediated by RNA polymerase II (Pol II). The initial step is the binding of TFII D to the promoter at a short distance from the transcriptional start site. TFII D functions as a multiprotein complex composed of TATA-binding protein (TBP) and the highly con-
served TBP-associated factors (TAFIs). Human TFII D has been shown to be comprised of at least two distinct sub-
populations: a core group containing human (h)TAFIIs250, hTAFIIs135, hTAFIIs100, and hTAFIIs28, present in all TFII D complexes; and another group containing promoter-specific hTAFIIs, such as hTAFIIs30, hTAFIIs20, and hTAFIIs18 (10, 11). After TFII D binding is that of TFII B, a GTF with affinity for single-stranded DNA, which apposes to sequences adjacent to the TATA box in response to a critical change in DNA topology induced by TBP (12). Recruitment by TFII B of another GTF, TFIIF-α, is followed by binding of RNA Pol II (13). While this description implies a stepwise accretion of factors, recent evidence suggests that stable, preformed basal transcription complexes may also exist, which contain RNA Pol II in addition to other GTFs (14). Ultimately, it is by influencing the rate of assembly of such complexes that nuclear receptors, in association with their coregulators, achieve transcriptional regulation at hormone-regulated promoters.

II. Nuclear Receptor Coactivators

A. Background

1. Direct interactions between receptors and GTFs. Direct protein-protein interactions, the functionality of which is yet to be determined, have been reported between receptors and GTFs. TBP and several TAFIIs interact functionally with specific receptors and are, by our definition, nuclear receptor coactivators. Consistent with the designation of TBP recruitment as a rate-limiting step in transcriptional initiation (15), several interactions between TBP and nuclear receptors have been reported. Protein-protein interaction assays, such as the yeast two-hybrid screen and in vitro binding assays with recombinant proteins, have detected an association between a portion of the TBP and the AF-2 function of RXR (16). Similarly, AF-1 and AF-2 of the ER bind TBP in vitro (17), and a similar interaction has been documented between PR and the TAFIIs110 subunit of TFII D (18). In addition to those with TBP, contacts of nuclear receptors with other GTFs have been described. Interactions between AR and TFII F (19) and RAR and TFII H (20), and the interactions of TFII B with VDR (21) and other nuclear receptors (22), may be influential in mod-
ulating a DNA-bound ternary complex of receptor, TFII B, and TBP-TAFIIs. These interactions suggest that direct inter-

![Fig. 1. Model for transactivation by a nuclear receptor. While this model applies generally to type I receptors, type II receptors can bind their response elements in the absence of ligand.](image-url)
actions between nuclear receptors and GTFs may contribute to the assembly of final transcriptional complexes at their target promoters.

2. Evidence of the existence of coactivators. An early indication of the interaction of activated receptors with factors other than GTFs was the phenomenon of squelching, or transcriptional interference between receptors, in transient receptor/reporter co-transfection assays (23, 24). In the context of activation, squelching defines the reduction in transactivation of a promoter regulated by nuclear receptor A (more specifically, an activation function) in the presence of a distinct, activated receptor B. The clear inference from such experiments was that titration of a cellular pool of factors for which the activation functions competed limited the overall reporter gene activity of the receptors. Such experiments indicated that common cofactors might be an important functional link between the receptor and transcriptional initiation. Supportive of such a notion was the fact that tissue- and promoter specificity were characteristic of the activation functions of the ER (25) and RAR (26). Collectively, these studies suggested a level of control at enhancer-controlled promoters beyond the actual receptor-response element interaction.

B. Receptor-associated proteins and coactivators

1. ER-associated proteins (ERAPs) and RIPs. In a seminal study, Halachmi et al. (27) used a purified ligand-bound ER LBD to identify ER-interacting proteins from 35S-radiolabeled MCF-7 cell lysates. Two proteins, ERAP-140 and ERAP-160, were identified in this manner. A potential role for these proteins in ER function was suggested both by the ligand dependence of their interaction with ER and by the fact that transcriptionally defective mutants of ER failed to recruit these factors. Moreover, the estrogen antagonists 4-hydroxamoxifien (4-HT) and the pure antiestrogen, ICI 170 (GR-interacting protein 170, postulated to be equivalent (28) biochemically characterized a 170-kDa protein, GRIP-170 (GR-interacting protein 170, postulated to be equivalent to ERAP-160), which interacted with GR in a hormone-dependent manner and which was enriched in a mammalian cellular fraction that potentiated GR activity in an in vitro transactivation assay.

Cavalliès et al. (29) used far-Western blotting and in vitro interaction assays to identify receptor-interacting proteins (RIPs) of 160, 140, and 80 kDa. As with ERAPs, RIPs failed to interact either with antiestrogen-bound ER or with transcriptionally-defective mutants of ER. Subsequently, this group (30) reported the cloning of the cDNA encoding RIP-140 and demonstrated its widespread expression in mammalian tissues. In vitro interactions of RIP-140 were demonstrated with wild-type ER, but not with transcriptionally defective ER mutants. Although marginal coactivation of ligand-dependent ER transactivation was exhibited in transient cotransfection in mammalian cells, no interaction of RIP-140 with GTFs such as TBP or TFIIIB could be demonstrated. Indeed, recent evidence, while supporting the ligand-dependent interaction of RIP-140 with TR2, suggests that RIP140 acts as a corepressor for this orphan receptor member of the nuclear receptor superfamily (31).

2. The SRC family. Table 1 shows a summary of the properties of characterized nuclear receptor coactivators. To encourage brevity, consensus, and clarity in discussion of SRC coactivators, we are adopting the proposed nomenclature (32).

a. SRC-1/NCoA-1. The cloning and characterization of steroid receptor-coactivator-1 (SRC-1/hSRC-1) by our laboratory (33) was the first description of an authentic common transcriptional mediator for nuclear receptors. Identified using a yeast two-hybrid screen of a human B-lymphocyte cDNA library with a bait encoding the PR LBD, hSRC-1 exhibits a broad range of specificity in the coactivation of the ligand-dependent transactivation of nuclear receptors, including PR, GR, ER, TR, RXR (33), HNF-4 (hepatocyte nuclear factor 4; Ref. 34), and PPARγ (peroxisome proliferator-activated receptor; Ref. 35). The interaction of hSRC-1 with the PR LBD is ligand dependent (33) and is abolished in the presence of the antiprogestin RU486. Furthermore, hSRC-1 has been shown to be capable of reversing the squelching of PR transactivation by cotransfected ER, indicating that it constitutes a common, limiting factor recruited by the LBDs of ER and PR for efficient transactivation (see Section II.A). In addition, a hSRC-1 mutant, containing only the C-terminal receptor-interacting domain (Fig. 2), suppresses PR coactivation by hSRC-1 in a dominant-negative fashion, both in transient transfection (33) and by in vitro transcription assay (36). Lee and colleagues have shown that, in addition to nuclear receptors, hSRC-1 modestly coactivates other transcription factors, including AP-1 (37), serum response factor (38), and NF-kB (39).

Several studies have indicated the ability of hSRC-1 to mediate functional interactions between the N-terminal AF-1 and C-terminal AF-2 activation functions of steroid receptors. Individual domains of hSRC-1 are required for full functional synergy between AF-1 and AF-2 of the PR (40), as well as ER (41) and AR (42), indicating that the efficient assembly of a preinitiation complex by steroid receptors is contingent, at least in part, on an SRC-1-assisted interaction between their individual AFs. Because the functional interaction of SRC-1 with receptors appears to be largely dependent on the integrity of a conserved amphipathic helix in the AF-2 region of receptors (43), we suggest that it and other predominantly AF-2 interacting coactivators be referred to as...
<table>
<thead>
<tr>
<th>Cofactor</th>
<th>Alternative designations</th>
<th>Related factors</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERAP-160</td>
<td>GRIP-170, p160</td>
<td>ERAP-140</td>
<td>ERAPs bind ER in ligand-dependent manner; mammalian cellular fraction enriched in GRIP-170 coactivates GR.</td>
<td>27, 28</td>
</tr>
<tr>
<td>RIP-140</td>
<td>RIP-160</td>
<td>RIP-160</td>
<td>Interacts with and coactivates ER; acts as a corepressor for TR2 orphan receptor.</td>
<td>29, 30, 31</td>
</tr>
<tr>
<td>TBP/TAFH8</td>
<td>SRC-1</td>
<td>hSRC-1</td>
<td>Interacts with and specifically coactivate nuclear receptors.</td>
<td>10, 16–22, 85–86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NCoA-1/mSRC-1</td>
<td>Interacts with and coactivates nuclear receptors; interacts with CBP/p300; contacts basal transcription factors; possesses acetyltransferase activity, interacts with PCAF; contains autonomous activation domains; targeted deletion causes partial hormone insensitivity in mice.</td>
<td>33–46, 58–60, 67, 93, 104, 105, 109</td>
</tr>
<tr>
<td>Trip-1</td>
<td>Sug-1</td>
<td>Trips</td>
<td>Substitutes for Sug1 in yeast and interacts with TR, Gal4 and VP16; Trips interact with RXR and show homology to yeast transcriptional activators; Sug1 interacts with RARα in yeast and mammalian cells; contains ATPase domain.</td>
<td>74, 75</td>
</tr>
<tr>
<td>TIF1α</td>
<td>TIF1β, γ</td>
<td></td>
<td>Interacts with and coactivates RXR/RAR AF2 in yeast; TIF-1α represses when fused to DNA-binding domain; TIF-1β interacts with factors related to chromatin-modifying proteins.</td>
<td>187–194</td>
</tr>
<tr>
<td>ARA-70</td>
<td></td>
<td></td>
<td>ARA70 interacts with and coactivates AR in prostate cells.</td>
<td>94–95</td>
</tr>
<tr>
<td>TRAPs</td>
<td>DRIPs</td>
<td>Biochemically-identified protein complexes; interact with liganded TR/VDR; enhance TR and VDR-mediated transcription in vitro. TRAP/DRIP220 contains NR boxes; share components with SMCC complex.</td>
<td>76–80</td>
<td></td>
</tr>
<tr>
<td>CBP</td>
<td>p300</td>
<td>Interacts with and coactivates multiple activators, including nuclear receptors; acetyltransferase; interacts with PCAF; SRC-1, TIF2/hSRC-2 and p/CIP/mSRC-3; mutated in Rubinstein/Taybi syndrome.</td>
<td>45, 50, 51, 58, 60, 81, 99, 100, 103–106, 165, 171–173, 175</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p300</td>
<td>CBP</td>
<td>Broad functional similarity to CBP; interacts with and coactivates nuclear receptors; possesses acetyltransferase activity; interacts with PCAF, SRC-1 and p/CIP/mSRC-3.</td>
<td>100–102, 107–112, 165, 174</td>
</tr>
<tr>
<td>PCAF</td>
<td>hGCN5</td>
<td></td>
<td>Possesses intrinsic acetyltransferase activity; interacts with PR and SRC-1; interacts with TR and ACTR; present in 2 MDa complex containing histone-like TAFH8 complex.</td>
<td>36, 58, 165, 167–169</td>
</tr>
<tr>
<td>TIF2/hSRC-2</td>
<td>GRIP-1/mSRC-2</td>
<td>hSRC-1</td>
<td>Interacts with and coactivates nuclear receptors; interacts with CBP.</td>
<td>47–52, 58</td>
</tr>
<tr>
<td>TRIP230</td>
<td></td>
<td></td>
<td>Rb-binding protein that selectively coactivates TR in specific cell types.</td>
<td>96</td>
</tr>
<tr>
<td>L7/SPA</td>
<td></td>
<td></td>
<td>Interacts with RU486-bound PR and enhances partial agonist activity of RU486 with PR.</td>
<td>71</td>
</tr>
<tr>
<td>p/CIP/mSRC-3</td>
<td>ACTR/hSRC-3</td>
<td>SRC-1</td>
<td>pCIP coactivates CBP-mediated signaling pathways; interacts with CBP and p300.</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>RAC3/hSRC-3</td>
<td>TIF2/hSRC-2</td>
<td>ACTR interacts with and coactivates TR; possesses acetyltransferase activity; interacts with CBP/p300 and PCAF.</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>AIB-1/hSRC</td>
<td>GRIP-1/mSRC-2</td>
<td>RAC3 interacts with nuclear receptors, coactivates PR & RAR and contains autonomous activation domain.</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>TRAM-1/hSRC-3</td>
<td>SRC-3</td>
<td>AIB-1 interacts with, coactivates ER; overexpressed in breast tumors and breast cancer cell lines.</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>p160, SRC-3</td>
<td></td>
<td>TRAM-1 interacts with and coactivates TR.</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SRC-3 preferentially coactivates ERα over ERβ.</td>
<td>57</td>
</tr>
<tr>
<td>Cofactor</td>
<td>Alternative designations</td>
<td>Related factors</td>
<td>Comments</td>
<td>References</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>E6-AP</td>
<td>RPF-1 (hRSP5)</td>
<td>E3 ubiquitin-protein ligases; E6-AP interacts with and coactivates AR, ER, PR and GR; E3 ubiquitin ligase; E6-AP and RPF-1 synergistically enhance PR activation.</td>
<td>58, 68–70</td>
<td></td>
</tr>
<tr>
<td>BRG-1</td>
<td>SWI2/SNF2</td>
<td>Interacts with GR and ER; required by GR for chromatin remodeling.</td>
<td>176–186</td>
<td></td>
</tr>
<tr>
<td>NSD-1</td>
<td></td>
<td>SET domain-containing protein; interacts with liganded and unliganded nuclear receptor LBDs.</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>PGC-1</td>
<td></td>
<td>Expressed in brown adipose tissue and skeletal muscle; interacts with PPAR-γ in a ligand-independent manner; induced at low temperatures, enhances PPAR-γ activation during adaptive thermogenesis.</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>HMG-1</td>
<td>HMG-2</td>
<td>Coactivation specific for steroid receptors; promotes DNA binding by steroid receptors.</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>NCoA-62</td>
<td>BX42</td>
<td>Interacts with VDR, RAR and RXR; coactivates VDR strongly, GR, RAR and ER weakly.</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>TSC-2</td>
<td>Tuberin</td>
<td>Interacts with RXR; coactivates PPARγ and VDR; gene located in a locus, 16p13, associated with familial tuberous sclerosis.</td>
<td>90–92</td>
<td></td>
</tr>
<tr>
<td>PBP</td>
<td>TRAP 220, TRIP2, mPIP9</td>
<td>PBP binds to PPARγ, RARα, RXR and TRβ-1 and coactivates PPARγ originally isolated as a TR-binding protein, TRIP2.</td>
<td>77, 79, 87, 88</td>
<td></td>
</tr>
<tr>
<td>Positive cofactors</td>
<td>PC2, PC4</td>
<td>Synergistically activate TR-TRAP activation in an in vitro transcription assay.</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>ADA</td>
<td></td>
<td>Yeast acetylase complex which mediates AF-2 dependent activation by RXR and ER.</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>SMCC</td>
<td>TRAPs/DRIPs</td>
<td>Human SRB/mediator-containing complex; contains components homologous to TRAPs/DRIPs.</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>SRA</td>
<td></td>
<td>Functions as RNA transcript; selectively coactivates AF-1 of steroid receptors; present in SRC-1 complex.</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>SNURF</td>
<td></td>
<td>Interacts with AR in yeast and mammalian cells; coactivates AR, PR, GR, Sp1 and AP-1 and basal activity; contains RING finger domain.</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>ARIP3</td>
<td>Miz1, PIAS3, GBP</td>
<td>Interacts with and modestly coactivates AR; expression specific to the testis in humans.</td>
<td>214</td>
<td></td>
</tr>
</tbody>
</table>

SRC family members are referred to by original clone names/names according to proposed nomenclature (Ref. 32; see footnote 1).
AF-2 coactivators, to distinguish them from non-AF-2 interacting factors, such as steroid receptor RNA activator (SRA; Section II.B.4.a) and PPARγ coactivator-1 (PGC-1, Section II.B.4.d).

SRC-1 contains two activation domains that retain their activity when transferred to a heterologous DBD (40) and, interestingly, Takeshita et al. (44) have demonstrated the interaction of hSRC-1 in vitro with TFIIIB and TBP. When a longer form of SRC-1 (45) was cloned in the mouse [NCoA-1 (nuclear receptor coactivator 1)/mSRC-1], it was found to contain an additional 380 amino-terminal residues relative to the initial SRC-1 clone (33), which might have represented either a partial clone or a splice variant of the full length protein. Sequence analysis of the amino-terminal region has identified tandem bHLH (for basic helix-loop-helix) and PAS (for Per/Arnt/Sim homology) domains. The bHLH/PAS domains mediate homodimeric and heterodimeric interactions between proteins containing these motifs (46), and their conservation in the SRC family (see Section II.B.2.d, Fig. 2) suggests that functional cross-talk between nuclear receptor-mediated pathways and other PAS-containing factors might occur (45). On the basis of differences in the deduced encoded amino acid sequences of cDNA clones isolated during screens, the existence of splicing variants of NCoA-1/ mSRC-1 has been conjectured (45), but their biological role, if any, is unknown at present.

b. GRIP1/TIF2/NCoA-2/SRC-2. Characterization of cDNAs encoding GRIP1 (GR-interacting protein 1), TIF2 (transcription intermediary factor 2), and NCoA-2, 160-kDa nuclear receptor-interacting proteins with considerable sequence and functional similarity to SRC-1 (47–50), established the existence of what is now termed the SRC family (Fig. 2), also referred to previously as the p160 family (45). GRIP1 (mSRC-2) and TIF2 (hSRC-2) associate in a ligand-dependent manner in vitro with several receptor LBDs (47) and, in vivo, with RARα, ER, and PR in the presence of hormone, but not hormonal antagonists (47–49). In addition, GRIP1/mSRC-2 and TIF2/hSRC-2 contain two autonomous activation domains capable of stimulating transcription when tethered to a heterologous DBD in yeast (48) and in mammalian cells (47, 48, 51). Furthermore, overexpression of TIF2, like SRC-1/ hSRC-1, is capable of relieving squelching by ER (47). Furthermore, a truncated GRIP1/mSRC-2 inhibits hormone-dependent expression from the mouse mammary tumor virus (MMTV) promoter, a property reminiscent of the dominant-negative properties of the receptor-interacting domain of SRC-1/hSRC-1 in relation to PR transactivation (48). GRIP1/ mSRC-2 is also capable of enhancing transactivation in yeast of fusions of type I and type II receptors with the DBD of the yeast Gal4 activator (49, 52).

c. p/CIP/RAC3/ACTR/AIB-1/TRAM-1/SRC-3. The identification of a third member of the SRC/p160 family, a highly polymorphic protein isolated independently as p/CIP [p300/CPB cointegrator-associated protein (50)], ACTR [activator of thyroid receptor (53)], RAC-3 [receptor-associated coactivator 3 (54)], AIB-1 [amplified in breast cancer-1 (55)], TRAM-1 [thyroid receptor activator molecule 1 (56)] and SRC-3 (57), serves to illustrate the growing complexity of nomenclature in the SRC family. For clarity, the unifying term “SRC-3” has been proposed for this member of the SRC family. hSRC-3 interacts with and coactivates a wide variety of nuclear receptors in a ligand-dependent manner, including RAR, TR, RXR, GR (53), PR (54), and ER (55). p/CIP/ mSRC-3, however, exhibits greater promiscuity than other SRC family members by enhancing the transcriptional activity of a number of different activators, including interferon-α and CAMP regulatory element binding protein (CREB; Ref. 50), which were previously shown to be primarily dependent upon the transcriptional coactivator CREB-binding protein (CBP; Section II.B.5) for efficient activation. Furthermore, SRC-3 selectively enhances the transcriptional activity of ERα over that of ERβ, possibly reflecting a 60% difference in homology between the LBDs of these isoforms (57). Li et al. (54) have demonstrated a feed-forward mechanism for regulation of RAC3/hSRC-3 expression by retinoid treatment in HL-60 cells, adding an additional level of control to nuclear receptor action.

d. Redundancy and diversity in the SRC family. The SRC family (Fig. 2) is defined by an overall sequence similarity of 40% between the three proteins, distinguishing its members from other coregulator classes, such as the p300/CPB cointegrators (Section II.B.5), E3 ubiquitin-protein ligases (Section II.B.3.a), TRAPs (TR-associated proteins, Section II.B.3.e), and the TIF-1 family (transcriptional intermediary factor-1, Section IV.D.2). The extent of sequence conservation between individual members is most apparent in their N-terminal domains, in which the bHLH/PAS domains exhibit a high degree of similarity. The extensive homology among SRC family members in this region is unique among PAS-containing proteins (54), identifying these proteins as a distinct subfamily of PAS factors. Like other PAS proteins, evidence...
suggests that SRC family members are capable of forming heteromultimeric and homomultimeric complexes in vivo (58), although the requirement of the PAS domain for such interactions, as well as their functional significance, is unclear.

Redundancy within the SRC family is indicated by the phenotype arising from targeted deletion of the murine SRC-1 locus. In this study, our laboratory provided the first in vivo data for the biological role of SRC-1 expression in hormone-responsive pathways involved in adult sexual maturation. The phenotype of the SRC-1 null mutant is characterized by viability and fertility of both sexes against a background of significantly decreased growth of steroid target organs such as prostate, testis, and mammary gland in response to hormonal stimulation (59). We believe that the phenotype of the mSRC-1 null mutant arises in part from the compensatory overexpression of GRIP1/mTIF2 in certain tissues in the mutant, providing in vivo evidence of partial functional redundancy between mSRC-1 and GRIP1/mTIF2.

While the compensatory sequence similarity between SRC family members indicates some redundancy of function, there is sufficient sequence divergence within the family to indicate functional autonomy. The liberal use of putative splice junctions in the C-termini of SRC members gives rise to considerable sequence complexity between each member in these regions. For example, SRC-1 and TIF2/hSRC-2 are distinguished by a 65-amino acid deletion in TIF2/hSRC-2 with respect to SRC-1 (Fig. 2). Such structural anomalies between the members of the SRC family are reflected by differences both in their immunoreactivity and in their functional characteristics. Microinjection into cells of anti-NCoA-2/mSRC-2, but not anti-NCoA-1/mSRC-1 antibodies, prevented RAR-dependent transactivation of a retinoic acid response element (RARE)-linked reporter gene. Coinjection of NCoA-1/mSRC-1, NCoA-2/mSRC-2, or p/CIP/mSRC-3 expression vectors showed, however, that either NCoA-1/mSRC-1 or NCoA-2/mSRC-2, but not p/CIP/mSRC-3, could rescue transactivation of this reporter gene (50). This result correlates with the compensatory overexpression of GRIP1/mTIF2 (SRC-2) in the SRC-1 null mutant and indicates the functional distinction between the SRC-1/SRC-2 and SRC-3 subfamilies. In addition, immunodepletion with anti-NCoA-1/mSRC-1 antibodies had no effect on cAMP- or interferon-α dependent reporters, indicating the dispensability of NCoA-1/mSRC-1 in classic CBP-mediated signaling pathways. While the functional importance of the sequence variations between hSRC-3 isoforms and p/CIP/mSRC-3 is unclear, p/CIP, unlike the hSRC-3 isoforms, preferentially enhanced interferon-α stimulation of a reporter gene, suggesting a closer functional similarity of p/CIP/mSRC-3 to CBP than the hSRC-3 isoforms. Furthermore, while p/CIP/mSRC-3 failed to significantly enhance RAR function (50), the hSRC-3 isoforms ACTR (53), RAC3 (54), and TRAM-1 (56) markedly enhanced transactivation by RAR/RXR. These conflicting results are quite possibly a consequence of the C-terminal anomalies between p/CIP/mSRC-3 and the hSRC-3 isoforms. Comparison of the sequences of SRC-3 members indicates that they are encoded by the same gene in different species and are distinguishable by the length of their polyglutamine tract and the presence of a lengthy unrelated C-terminal sequence present only in the p/CIP/mSRC-3 isform (Fig. 2).

Another piece of evidence indicating a degree of autonomy of the SRC-3 subfamily is the overexpression of AIB-1/hSRC-3 in primary breast tumors (55) against a background of relatively low expression levels of SRC-1 and TIF2/SRC-2. These results indicate that overexpression of AIB-1/hSRC-3 is a factor in the genesis and/or progression of these tumors and the stimulus for growth that it may afford is not limited by the comparatively low levels in these tumors of SRC-1 and TIF2/mSRC-2. In their totality, the structural discrepancies between SRC family members indicate functional diversity that may determine their interaction with nuclear receptors, with other promoter-specific transcription factors, and with other transcriptional coregulators.

c. The LXXLL/NR box motif. Detailed scrutiny of the receptor-interacting domains of RIP-140 (Section II.B.1) and SRC family members (50, 60) identified a conserved motif, LXXLL (where L is leucine, X is any amino acid), termed the nuclear receptor (NR) box (Ref. 61; Fig. 2), which is necessary and sufficient to mediate binding of the coactivators to liganded nuclear receptors. Three such motifs are conserved in SRC family members, and an additional NR box is present in the extreme C terminus of h/m (human/mouse) SRC-1 (Fig. 2). Secondary structure analysis of these motifs has indicated that they form amphipathic α-helices and that the conserved leucines form a hydrophobic surface on one face of the helix. The role of the NR box in mediating ligand-dependent receptor-coactivator interactions is signified by its conservation in the central portions of all three SRC family members (Fig. 2), to which domains mediating interactions with nuclear receptors have been localized (33, 50, 51, 54). Furthermore, the nonconserved NR box motif of h/mSRC-1 is present in its C terminus, which mediates the hormone-dependent interaction of hSRC-1 with PR (53). The mutation of key residues in the four NR boxes of hSRC-1, (I–III in the central portion of the protein and IV in the extreme carboxyl terminus) has been shown to abolish interaction with AF-2 of the ER but does not affect the interaction of hSRC-1 with CBP. In addition, hSRC-1 mutant fails to coactivate the ligand-dependent activity of ER (60). In a broader context, the importance of the NR box motif is indicated by its presence in a wide variety of nuclear receptor coregulators, including E3 ubiquitin-protein ligases (Section II.B.3.a), TRAPs (Section II.B.3.e), p300/CBP (Section II.B.5), and TIF-1s (Section IV.D.2). A detailed approach to the question of the significance of multiple NR boxes in receptor-coactivator interactions (61) suggests that distinct NR box motifs exhibit differential binding to different receptors. It has become apparent that sequence anomalies around individual NR boxes might determine their binding affinity for the AF-2 ligand-induced hydrophobic groove of nuclear receptors (62). Indeed, the notion that the LXXLL motif is an immutable requirement for interaction with receptor LBDs has been challenged by the ability of the FXXLL motif of Nsd-1 (nuclear receptor-binding SET domain-containing protein 1, Section IV.D.3) to mediate its interaction with nuclear receptor LBDs (63).

Recent studies have shed light on the series of events that accompany ligand interpretation and coactivator interaction
with the AF-2 of nuclear receptors. Feng et al. (64) have dissected the interaction between the TR AF-2 and GRIP1/mSRC-2 and have described the appearance of a hydrophobic groove in the ligand-bound AF-2 of TR (and ER), the interactive surface of which is highly conserved. A peptide modeled upon a GRIP1/mSRC-2 NR box recognizes a hydrophobic groove in the TR LBD lined by a series of residues, the deletion of any of which abrogates GRIP1/mSRC-2 peptide binding and TR transactivation (64). The critical role in AF-2 activity of an agonist-induced conformational change in the region of helix 12 of nuclear receptors has been well documented (65). By presenting crystallographic evidence that implicates helix 12 of tamoxifen-bound ER as a steric impediment to the binding of GRIP1/mSRC-2 to the ER, Shiau et al. (66) have shed light on the differential affinity of agonist and antagonist-bound receptor for coactivator. As is the case with TR (64), the NR box peptide occupies a hydrophobic groove fashioned by helices 3, 4, 5, and 12 of ligand-bound ER. Conversely, antagonist-induced apposition of helix 12 to the hydrophobic groove does not form part of an interactive surface, but rather occludes residues critical for the interaction between ER and the NR box peptide (66). The 2.2 Å resolution crystal structure of the ligand-bound PPARγ-SRC-1 complex (67) has highlighted the role of a "charge clamp" of conserved glutamate and lysine residues in the PPARγ-LBD that make contact with backbone atoms of the NR boxes of SRC-1. In addition, tandem NR boxes of the SRC-1 moiety were shown to contact with both members of a PPARγ homodimer, hinting at a possible further role of multiple NR box motifs in coregulators.

3. Other coactivators.

a. E3 ubiquitin-protein ligases: E6-AP and RPF-1. Using a yeast two-hybrid screen with the hPR as a bait, our laboratory has recently identified a PR-interacting protein that is identical to the E6 papillomavirus-associated protein E6-AP (68). E6-AP, an E3 ubiquitin-proteins ligase that targets proteins for degradation by the ubiquitin pathway, interacts with and coactivates hormone-dependent transactivation by members of the nuclear receptor superfamily. Further supporting its identity as a coactivator, E6-AP reverses squelching between ER and PR and contains an intrinsic activation function in its N-terminal domain. Tandem NR boxes (Section II.B.2.e) are present in its C-terminal receptor-interacting region. E6-AP was originally identified through its association with the papillomavirus E6 protein: a complex of E6 and E6-AP was shown to target the p53 tumor-suppressor protein for degradation (69). Interestingly, however, the ubiquitin ligase activity of E6-AP is separable from its coactivation function. E6-AP is closely related to the E3 ubiquitin-protein ligase RPF-1, the human homolog of yeast RSP-5, a protein shown to enhance PR and GR transactivation in mammalian cells (70). Our laboratory has recently shown that E6-AP and RPF-1 synergistically enhance PR transactivation in mammalian cells. In addition, these proteins copurify by gel filtration, indicating that their synergistic coactivation of PR might be related to their presence in a common complex (58).

b. L7/SPA. A two-hybrid screen of a HeLa cDNA library using the PR antagonist RU486-bound PR D/E domain as a bait isolated a 27-kDa protein, L7/SPA, a previously described nuclear protein having no known function (71). L7/SPA increases the partial agonist activity of 4-HT-occupied ER and RU486-occupied PR or GR by 3- to 10-fold in vitro but does not influence the activity of the agonist-bound receptor. Interestingly, the antihormonal effects of the pure antiestrogen ICI164384 on ER and the pure antiprogestin ZK98299 on PR could not be offset by coexpression of L7/SPA.

c. TLS. Powers et al. (72) used murine RXR to isolate a 65-kDa protein, termed translocated in liposarcoma (TLS), a protein previously identified as a member of the RNP family of nuclear RNA binding proteins. Translocation-induced fusion of this protein to a DNA-binding protein, CHOP, had been previously shown to result in a potent chimeric transactivator. High-affinity binding of TLS to DNA-bound TR was demonstrated, as was the interaction of TLS with TR in vivo. It was suggested that TLS may enhance receptor protein or RNA stability, but this is yet to be determined. Intriguingly, TLS bears significant sequence similarity to hTAF168, a TFIID/RNA Pol II-associated protein (73).

d. Trip-1/Sug-1. Lee et al. (74) have identified a protein, Trip-1, that interacts with TR and RXR baits in a yeast two-hybrid assay in a ligand-dependent manner. It was identified as a member of the CAD (conserved ATPase domains) family of proteins and exhibits significant sequence identity with the yeast transcriptional coregulator, Sug1, originally identified as a suppressor of a mutation in the transcriptional activation domain of the yeast activator Gal4. Although Sug1 was originally postulated to be a component of the RNA Pol II holoenzyme complex, Rubin et al. (75) have reported its copurification with the 2MDa yeast 26 proteosome complex and have correlated this with reduced ubiquitin-dependent proteolysis in sug1 mutants. Along with the identification of the E3 ubiquitin-ligases, E6-AP and RPF-1, as coactivators of PR transactivation, these results reiterate the importance of protein degradation pathways in receptor action, although the exact role of such pathways is unknown. Trip-1 does not contain consensus LXXLL/NR box motifs (Section II.B.2.e), evidence of the existence of binding determinants, other than NR boxes, which govern interactions between nuclear receptors and their coactivators.

e. TRAPs/DRIPs. Recent biochemical approaches have permitted the identification and extensive characterization of multiprotein complexes that interact with liganded nuclear receptors. Fondell et al. (76) employed one such biochemical purification strategy to isolate TR-associated proteins. They showed that epitope-tagged TR purified from HeLa cells cultured in the presence of thyroid hormone was associated with a group of distinct nuclear proteins termed TRAPs (TR-associated proteins). Supplementation of an in vitro transcription system with the TR/TRAP complex enhanced the transcriptional activity of a promoter driven by thyroid hormone response elements on naked, chromatin-free DNA (76). While the TRAPs were shown initially to be immunologically distinct from SRCs (Section II.B.2), CBP (Section II.B.5), TIF-1s (Section IV.D.2), RIP140 (Section II.B.1), and TAF168 (Section II.B.3.g), it has since been demonstrated that a 220-kDa member of the complex, TRAP 220, is identical to the PPARγ-binding protein, PBP (Section II.B.3.h; Ref. 77). Adopting a similar approach, Freedman and colleagues have presented similar data with respect to the VDR (78). Purified VDR...
recruited a complex of proteins (DRIPs or VDR-interacting proteins) that is homologous to the TRAP complex. The DRIPs, which range in size from 70–230 kDa, were shown not to contain SRC family members, p300/CBP, or other characterized coactivators. As with TRAPs for TR, DRIPs were shown to modestly enhance the activity of VDR in a cell-free ligand-dependent transcription assay (78).

The role of such morphologically distinct complexes in receptor activation is currently unclear, but a model has been proposed in which these complexes might assume significant roles in repetitive rounds of transcription mediated by TR and VDR. In such a scenario, initial recruitment of chromatin-modifying complexes containing the cointegrators p300/CBP (Section II.B.5) and members of the SRC family (Section II.B.2), would be followed by displacement of some of these complexes and interaction of receptor with TRAP/DRIP-like complexes to form a link with general initiation factors (Section LB; Ref. 79). While support for such a model arises from the identification of TRAP/DRIP components in a complex, SMCC, containing human homologs of yeast mediator/RNA Pol II holoenzyme factors (80), it should be noted that CBP itself exists in a stable complex with RNA Pol II (81). An alternative model arises from the interesting observation that in the DRIP study, ER-LBD failed to appreciably recruit DRIPs (78), raising the possibility that TRAPs/DRIPs represent a type II receptor-specific complex.

f. Positive cofactors (PCs). Two positive cofactors, PC2 and PC4, derived from the upstream stimulatory activity (USA) cofactor fraction, act synergistically to mediate thyroid hormone-dependent activation either by TR or by a TR-TRAP complex in a reconstituted in vitro system comprised of purified factors and naked DNA templates (82). PC4 is a general coactivator that functions cooperatively with TAF$_{II}$$_{30}$ and mediates functional interactions between enhancer-bound activators and the general transcription machinery of RNA Pol II-transcribed genes (83) and is related to viral immediately-early transcriptional regulators (84). In the absence of TAF$_{II}$$_{30}$ and TFIIH, PC4 strongly represses transcription initiation, while simultaneously promoting the formation of preinitiation complexes. Upon concerted phosphorylation by TFIIH and distinct TAF$_{II}$$_{30}$ (e.g., TAF$_{II}$$_{250}$), PC4 elicits full coactivator potential, indicating a situation reminiscent of that reported for activated transcription at prokaryotic ρ-dependent promoters.

g. TAF$_{II}$$_{30}$. The specific functional interaction of the AF-2 of different nuclear receptors with distinct TAF$_{II}$$_{30}$ has been well documented, and these interactions may serve to determine the specificity of the transcriptional response at a promoter. Sequestration of TAF$_{II}$$_{30}$ by ER has been shown to be necessary for ligand-dependent activation by the ER (10). In addition, TAF$_{II}$$_{28}$ selectively coactivates the AF-2 of RXR, an effect not observed for ER or VDR (85). To corroborate a specific role of TAF$_{II}$$_{30}$ in receptor transactivation, Mengus et al. (86) have demonstrated the ability of TAF$_{II}$$_{135}$ to coactivate RAR, VDR, and TR, but not RXR or ER, and have speculated that TAF$_{II}$$_{135}$ might enhance recruitment of TFIID by nuclear receptor AF-2s. Viewed in their entirety, these observations indicate that recruitment of distinct TFIIID complexes at diverse promoters might be a component of nuclear receptor action.

h. PBP/TRAP220/TRIP2/mpIP9. The PPAR members of the nuclear receptor superfamily regulate the expression of genes involved in lipid metabolism and adipocyte differentiation. A recent study (77) has shown that a 165-kDa PPARγ-binding protein, PBP, binds to and enhances the transcriptional activity of PPARγ. PBP has exact sequence similarity with TRAP220/TRIP2/mpIP9 (79, 87, 88) and has a broad binding specificity for type II receptors, including RAR$_{a}$, RXR, and TR$_{B}$. Furthermore, PBP contains two LXXLL motifs and is widely expressed in adult mice tissues. Given the limited binding specificity of PBP/TRAP220/TRIP2/mpIP9, the possibility exists that it represents a type II receptor-specific coactivator, although this has yet to be demonstrated on a functional level.

i. NCoA-62. Baudino et al. (89) used a yeast two-hybrid screen with VDR, RAR, and RXR to isolate a coactivator, NCoA-62, which manifested a broad specificity in both its interaction with, and coactivation of, nuclear receptors. NCoA-62 strongly coactivated VDR-mediated transcriptional activation, but more modestly enhanced ligand-dependent transcription from minimal promoters controlled by RAR, ER, and GR. While NCoA-62 lacks perfect LXXLL motifs, close inspection of its sequence indicates the presence of the pentapeptides LXXFL and LXXAL. The hydrophobic character of these peptides resembles that of LXXML, a motif involved in the intramolecular contact of helix 12 with helix 3 and helix 5 in raloxifene- and tamoxifen-bound ER (see Section II.B.2.e), interactions thought to act as a steric impediment to NR-box binding (66). These data, while circumstantial, indicate that the imperfect NCoA-62 motifs might suffice to mediate its interaction with the AF-2 region of its nuclear receptor-binding partners.

j. TSC-2 (tuberous sclerosis-2). Tuberous sclerosis is an autosomal dominant disorder characterized by the appearance of benign tumors in a wide variety of tissues, including the eye, kidney, heart, and brain, where they cause epilepsy and mental retardation (90). TSC has been genetically linked to two loci in humans, one located on chromosome 16p13 (91), and the TSC-2 gene product has been characterized as a 200-kDa protein containing a short N-terminal leucine zipper and a C-terminal region homologous to the RAP1 GTPase-activating protein. In a yeast two-hybrid screen using RXR as a bait, Henry et al. (92) isolated a gene bearing 98% homology to that encoding TSC-2, and TSC-2 was also shown to interact with RXR in an in vitro pull-down assay. In transient transfection assays, TSC-2 was shown to stimulate PPARγ and VDR-mediated transactivation. A mechanism for TSC-2 in nuclear transport and/or cytoplasmic signaling was suggested (92), but its role in nuclear receptor transactivation is yet to be clearly established.

4. Selective coactivators.

a. SRA. Our laboratory has recently isolated and functionally characterized a novel transcriptional coactivator, termed steroid receptor RNA activator, or SRA (93). SRA was originally isolated in a yeast two-hybrid screen using the amino-terminal domain of PR-A. When overexpressed in mammalian cells, recombinant SRA specifically enhances endogenous steroid receptor AF-1-mediated transactivation by 5- to 10-fold without altering the level of
basal transcription. Several pieces of evidence indicate that SRA functions not as a protein but as an RNA transcript, introducing an entirely novel concept not only in nuclear receptor action, but in eukaryotic transcription as a whole. Transactivation analysis of multiple SRA frameshift and stop codon-containing mutants indicates that these mutants retain the capacity to coactivate steroid receptors. Further evidence of the identity of SRA has been provided by transfection experiments in the presence of the de novo protein synthesis inhibitor cycloheximide, in which SRA retained its ability to coactivate a reporter gene, whereas protein coregulators such as hSRC-1 and CBP did not. In addition, biochemical analysis has suggested that the SRA transcript is present in an hSRC-1 complex that is recruited by steroid receptors in vivo. We have shown that SRA is expressed in a tissue-specific manner, e.g., in brain, where it colocalizes with the expression of certain steroid receptors. Given its evident functional selectivity, we have proposed a model in which SRA, as an AF-1 coactivator, functions to confer specificity upon coactivator complexes to specifically enhance steroid receptor-mediated transactivation (93).

b. ARAs. ARA70 (androgen receptor activator-70), a 70-kDa human protein isolated on the basis of ligand-dependent interaction with an AR AF-2 bait in a yeast two-hybrid screen, was reported to enhance AR transactivation in DU145 human prostate cells, but had no effect on transactivation by other nuclear receptors (94). Unlike the SRC family members hSRC-1 and TIF2/hSRC-2, ARA70 has been shown to be capable of enhancing the partial agonist activity of hormonal antagonists (95).

c. Trip230. Like AIB-1/hSRC-3 (Section II.B.2.c), the thyroid receptor coactivator Trip230 highlights the potential role of coactivators in disease states (96). Trip230 was isolated as a partner of the Rb gene product, the interaction being mediated by the N terminus of the Rb protein. 14q31. The chromosomal locale of the Trip230 gene, is a locus to which several abnormalities of thyroid hormone response, including Graves’ disease and congenital hyperthyroidism, have been linked, implicating Trip230 as a factor involved in the thyroid hormone response. While Trip230 binds TR in a thyroid hormone-dependent manner and enhances TR-dependent transactivation, thyroid hormone has no effect on its interaction with Rb. Coexpression of Rb abolishes the enhancement of TR transactivation effected by Trip230, indicating a functional antagonism between Rb- and TR-mediated pathways.

d. PGC-1. Puigserver et al. (97) have identified a novel coactivator, PGC-1 (PPARγ coactivator-1), which is preferentially expressed in brown fat and skeletal muscle and which enhances transactivation by TR and PPARγ on the uncoupling promoter-1 (UCP-1). In contrast to AF-2 coactivators, PGC-1 was shown to bind preferentially to a region outside the AF-2 domain of PPARγ, in the hinge (D) region. Overexpression of PGC-1 in white adipose tissue activates UCP-1 and key mitochondrial enzymes. In addition, exposure to low temperatures enhances expression of the PGC-1 gene, and this has been suggested to be a key mechanism underlying adaptive thermogenesis in mammals. PGC-1 is a striking example of the control over coactivator function exerted by environmental stimuli and is an intriguing insight into the mechanism whereby selective regulation of coactivator expression mediates a specific and isolated transcriptional response in vivo.

e. HMGs. The HMG-1 (high-mobility group) and HMG-2 proteins occupy a unique niche among characterized nuclear coactivators by selectively enhancing the DNA-binding activity of the type I steroid receptor subfamily (98). Transient transfection assays showed that cotransfection of HMGs with different steroid receptors resulted in enhancement of PR, GR, and AR transactivation, but not that of VDR. While HMG-1 and -2 interacted only transiently with purified PR in solution, and had no affinity for PRE (progesterone response element) per se, PRE binding by PR resulted in the formation of a stable PR-HMG-PRE complex. These results suggested that DNA binding by PR is concomitant with its interaction with HMGs, which serve to stabilize the association of PR with its response element.

5. Cointegrators: CBP/p300. CREB-binding protein (CBP) was initially characterized as a coactivator required for efficient activation of cAMP-regulated promoters by the transcriptional activator cAMP-response element-binding protein (CREB, Ref. 99). Several studies implicate CBP as a coactivator of multiple transcriptional activators, including p53 (100), NF-κB (101), and nuclear receptors (45, 102, 103). In addition, direct interactions between CBP and RXR, TR, and ER are mediated by the N-terminal domain of CBP (45), which contains an NR-box indispensable for receptor action (60).

In addition to its interactions with nuclear receptors, CBP interacts with members of the SRC family, including mSRC-1/NCoA-1 (45), TIF2/hSRC-2 (51), and p/CIP/mSRC-3 (50), indicating that it may form a ternary complex with SRC family members and nuclear receptors. Functional evidence suggests such a complex may exist, since CBP synergizes with hSRC-1 in the transactivation of ER and PR transactivation (104). Biochemical evidence suggests, however, that CBP does not form a stable complex with hSRC-1 (58), and it has been shown that the interactions of liganded ER (105) and PR (58) with CBP are relatively weak in comparison with the recruitment by these receptors of hSRC-1-containing complexes. We have proposed (58) that an initial receptor/hSRC-1 complex recruits other functionally diverse complexes containing coactivators such as CBP. In support of this, CBP is ineffective in restoring activity to an RARE-linked reporter gene after immunodepletion of NCoA-1/mSRC-1 (50), suggesting that CBP might require SRC-1 complexes as a platform to effect its coactivation of nuclear receptors. An overall model of CBP action (45) suggests that, as a common limiting cofactor for diverse transcriptional activators and coactivators, it acts as a cellular cointegrator to collate multiple effector signals into an integrated response at promoters containing multiple cis-acting elements. A critical physiological role of CBP is indicated by the fact that Rubinstein-Taybi syndrome, a rare disorder characterized by mental retardation and numerous physical deformities, is associated with mutation of CBP in humans (106).
scription factors such as MyoD (108), p53 (100), and nuclear receptors (102). In addition, p300 associates with mSRC-1 (109) and interacts with ER in a ligand-dependent manner (110). This functional redundancy is not complete however: targeted deletion of the p300 locus (111) indicates that functional CBP in such animals is insufficient to prevent defects due to loss of p300 in neurulation, cell proliferation, and heart development, as well as embryonic lethality. Kraus and Kadonaga (112), observing that p300 and ER synergistically activate cell-free transcription in the presence of chromatin, have postulated a cooperative “fire and reload” mechanism, in which p300 and ER cooperatively enhance transcription during a single round of transcription (“fire”), but only ER is required for reassembly of the transcriptional preinitiation complex (“reload”). Their results highlight the functional distinction between different events at a transcriptionally complex ("reload"). Their results highlight the functional distinction between different events at a transcriptionally complex (“reload”). This functional redundancy is not complete however: targeted deletion of the p300 locus (111) indicates that functional CBP in such animals is insufficient to prevent defects due to loss of p300 in neurulation, cell proliferation, and heart development, as well as embryonic lethality. Kraus and Kadonaga (112), observing that p300 and ER synergistically activate cell-free transcription in the presence of chromatin, have postulated a cooperative “fire and reload” mechanism, in which p300 and ER cooperatively enhance transcription during a single round of transcription (“fire”), but only ER is required for reassembly of the transcriptional preinitiation complex (“reload”). Their results highlight the functional distinction between different events at a transcriptionally active promoter and the individual role of diverse factors in the fluid and intricate process of transcriptional activation.

III. Nuclear Receptor Corepressors

A. Background

1. **Repression of basal transcription by nuclear receptors.** Transcriptional repression, or silencing, refers to the ability of type II receptors to lower basal promoter activity in the absence of ligand. A number of different mechanisms have been proposed for silencing by nuclear receptors. Passive repression refers to competition either for DNA binding or dimerization partners, both mechanisms resulting in steric hindrance by the unliganded receptor on the promoter, blocking access of activators or basal factors (113). In addition, inactive heterodimer formation with other type II receptors has been documented for TR (114, 115). Conversely, in the active silencing model, unliganded receptor either directly affects transcription initiation, or recruits an array of factors, the function of which is to create an environment that is incompatible with proper assembly of a preinitiation complex, a mechanism also known as transrepression. Data supporting direct contacts between nuclear receptors and general transcription factors that result in transcriptional silencing are limited. Baniahmad et al. (116) sketched a possible mechanism for silencing by TR, envisaging sequestration of the basal transcription factor TFIIB by domains in the C terminus of the unliganded TR. Maximal repression by TR, however, was contingent upon other more N-terminal domains that did not interact with TFIIB.

B. Corepressors

1. **NCoR/RIP-13.** Biochemical studies of cellular proteins associated with unliganded TR and RAR have identified a 270-kDa protein termed NCoR (nuclear receptor corepressor; Ref. 121), also isolated as RIP-13 (122). While Horlein et al. (121) reported that NCoR was specifically recruited by unliganded TRα and RARα, and that little or no interaction was observed between NCoR and RXR, VDR, ER, or GR, Seol et al. (122) isolated RIP13 using RXR as a bait. Mutational analysis of the TR LBD has identified a domain, termed the NCoR box, which is dispensable for the interaction of receptor and NCoR. Loss of the NCoR box attenuates repression by the unliganded TRα, strongly suggesting that interaction

Table 2. Nuclear receptor corepressors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Alternative designations</th>
<th>Related proteins</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCoR</td>
<td>RIP-13</td>
<td>SMRT</td>
<td>Interacts with and corepresses unliganded TRα, RARα & COUP-TF1, RevErb and DAX-1; contains autonomous repression domains; reduces RU486/PR partial agonist activity; specifically degraded by 26S proteosome after binding Siah; associates with PML-RARα fusion proteins in acute promyelocytic anemia.</td>
<td>71, 121–127, 131, 133, 134, 138, 140–142, 144, 149–151, 206, 207</td>
</tr>
<tr>
<td>SMRT</td>
<td>TRAC2</td>
<td>NCoR</td>
<td>Interacts with and corepresses unliganded TRα and RAR; significant sequence similarity with NCoR; contains an autonomous repression domains; reduces tamoxifen/ER and RU486/PR partial agonist activity; associates with PML-RAR fusion proteins in acute promyelocytic anemia.</td>
<td>71, 125, 128–142, 148, 150, 151, 208</td>
</tr>
<tr>
<td>TRUP</td>
<td>SURF-3, PLA-X, L7a</td>
<td></td>
<td>Reduces transcription by TR and RAR; decreases DNA binding by RXR heterodimers.</td>
<td>143</td>
</tr>
<tr>
<td>SUNCoR</td>
<td></td>
<td></td>
<td>Contains autonomous repression domain; corepresses TR and RevErb.</td>
<td>144</td>
</tr>
<tr>
<td>NURD</td>
<td></td>
<td></td>
<td>Couples ATPase activity to histone deacetylation; immunodepletion decreases repression by TR; contains NCoR-related subunit.</td>
<td>212</td>
</tr>
</tbody>
</table>
with NCoR is required for efficient TRα and RARα-mediated transcriptional repression (121). As is the case with several nuclear receptor coactivators, the existence of NCoR isoforms has been postulated based upon the isolation of cDNAs encoding putative splice variants, although no direct evidence of their existence has been obtained.

To substantiate the identification of NCoR as a mediator of ligand-independent repression, fusion of NCoR to the Gal4DBD effects potent repression at a promoter bearing Gal4DBD-binding sites (121). Deletion mutations of NCoR have identified two receptor-interacting domains (RIDs) in the C-terminal portion of the protein that are required for nuclear receptor interaction (122). Further N-terminal in the NCoR molecule are three repression domains, one at the extreme N terminus (RI) and two more centrally located (RII and RIII), to which the intrinsic repressive functions characteristic of NCoR have been ascribed. Analogous to the dominant negative activity of the C-terminal receptor-interacting domain of the coactivator hSRC-1 (Section II.B.2.a), coexpression of the RIDs-bearing domain of NCoR abolishes repression effected by unliganded TR and RAR (123). More recently, studies in our laboratory and others have indicated the role of NCoR in mediating the transcriptional silencing properties of members of the orphan receptor subfamily, including Rev-Erb (124), chicken ovalalbumin upstream promoter transcription factors (COP-1/Ref. 125) and DAX-1 (126). Moreover, Muscat et al. (127) showed the ability of NCoR and its variants RIP-13α and RIP-13β to directly interact with TFIIB, TAFII32, and TAFII70, indicating that corepressors may function, at least in part, by mediating repressive interactions of unliganded receptors with components of the basal transcription apparatus (transrepression).

2. SMRT/TRAC2. SMRT (silencing mediator for retinoid and thyroid hormone receptor) was isolated by a yeast two-hybrid screen of a human lymphocyte cDNA library using RXR as a bait (128). SMRT was also identified as TRAC2 (T3 receptor-associating cofactor 2), a protein isolated on the basis of its interaction with RAR, RXR, and TR (129). While significant sequence similarity exists between the N- and C termini of SMRT and NCoR (130), the N terminus of NCoR contains two repressor domains that are not present in SMRT. RAR and TR interact strongly with SMRT and RXR in a far-Western analysis, and addition of ligand to these receptors induces dissociation from SMRT, but not from RXR. Furthermore, in a yeast two-hybrid assay, a strong ligand-reversible interaction with SMRT has been observed for the LBDs of TR and RAR (128). In addition, direct recruitment of SMRT to a promoter by fusion with a heterologous DBD results in substantial repression of the basal transcription factors (COUP-TFs; Ref. 125) and DAX-1 (126). Moreover, Muscat et al. (127) showed the ability of NCoR and its variants RIP-13α and RIP-13β to directly interact with TFIIB, TAFII32, and TAFII70, indicating that corepressors may function, at least in part, by mediating repressive interactions of unliganded receptors with components of the basal transcription apparatus (transrepression).

3. NCoR and SMRT: functional similarities and divergence. NCoR and SMRT appear to be less than discriminate in their binding of repressive transcription factors, suggesting they may have a more general role in transcriptional repression than was initially considered. Dhrdain et al. (135) have described the interaction of the POZ motif of the non-Hodgkin’s lymphoma-associated protein LAZ3/BCL6 with SMRT. The promiscuous interaction of SMRT and NCoR with POZ motif-containing proteins is further illustrated by certain cases of acute promyelocytic leukemia, a disease characterized by incomplete leukemic differentiation and appearance of leukemic blast cells. Novel fusions of the RARα gene have been identified (136–138) that arise from chromosomal translocations with loci containing the genes encoding the PML (promyelocytic leukemia) and PLZF (promyelocytic leukemia zinc finger) proteins. The resultant proteins, PML-RARα and PLZF-RARα, were shown to retain the RARα DBD and LBD. Clinically, PML-RARα patients achieve complete remission upon administration of pharmacological doses of all-trans RA. PLZF-RARα patients, con-
versely, respond poorly to such therapeutic intervention. These phenomena were directly attributed to the constitutive recruitment of NCoR and SMRT by the PML protein, an interaction not subject to regulation by binding of ligand by the RARα moiety. The PML–RARα fusion, however, binds NCoR and SMRT only through the RARα LBD, explaining the ability of such patients to eventually respond to RA. To further illustrate its promiscuity, SMRT also interacts with CBF-1/ RBP-Jκ, the mammalian homolog of the Drosophila suppressor of hairless, which switches from a transcriptional repressor to an activator upon binding of the ligand *notch*. In the absence of ligand, CBF-1/RBP-Jκ is part of a repressor complex containing SMRT, which subsequently dissociates when *notch* binds (139).

While NCoR and SMRT are structurally similar (121, 128), they differ functionally in several respects. The molecular basis of heterogeneity of function among RAR isoforms has been ascribed to their differential interaction with SMRT and NCoR: whereas RARα and RARγ interact with both corepressors, RARβ exhibits no affinity for either SMRT or NCoR (131). The work of Banaihmad et al. (140) indicates that the weak repression of basal transcription by TR in CV-1 cells can be amplified by ectopic expression of SMRT, but not NCoR. These corepressors differ most notably, however, in the mediation of transcriptional repression by certain orphan receptors. Crawford et al. (126) showed that the orphan receptor DAX-1, which interacts with NCoR, does not recruit SMRT. Similarly, when bound to DNA, the orphan RevErb exclusively recruits NCoR, but does not require SMRT to effect transcriptional repression (141). Zhang et al. (142) demonstrated that repression by RevErb is cell line-specific, such that RevErb represses in 293T cells, but not in N18 neuroblastoma cells. They found that while the NCoR transcript is found in both cell types, NCoR protein is greatly reduced in the N18 cells. Yeast two-hybrid screening using the N-terminal portion of NCoR isolated a protein, present in N18 cells but absent in 293T cells, termed Siah (*Seven-in-absentia* homolog), a ring finger protein initially identified as a factor in *Drosophila* sevenless signaling. Siah is a potent mediator of NCoR down-regulation, decreasing the half-life of NCoR by approximately 5-fold. Siah-mediated down-regulation of NCoR has been linked to the 26S proteosome of the ubiquitin pathway: inhibition of the 26S proteosome prevents NCoR degradation and restores repression of RevErb (see also Sections II.B.3.a and II.B.3.d). Crucially, Siah does not interact with the N-terminal repression domain of SMRT and hence selectively targets NCoR for proteosomal degradation. Unlike RevErb repression, repression by TR is largely unaffected by endogenous Siah, consistent with its ability to recruit SMRT in addition to NCoR (142). The discriminate degradation of NCoR illustrates a mechanism whereby signaling by the function of one receptor type can be selectively abolished and highlights the multiple layers of control over nuclear receptor function.

4. Other corepressors.

a. TRUP/SURF-3/PLA-X. Burris et al. (143) have identified a protein, TRUP (thyroid receptor-uncoupling protein), which attenuates hormone-dependent transactivation by TR and RAR, but which has no effect on transactivation by ER or RXR. Sequence comparison of TRUP indicates its complete identity with the nuclear proteins SURF-3 and PLA-X. In addition, TRUP opposes ligand-dependent activation by TR in transient cotransfection. The ability of TRUP to diminish the hormone-dependent transactivation and silencing properties of TR has been attributed to the decreased ability of TR:RXR and RAR:RXR heterodimers to interact with their cognate hormone response elements (HREs). The capacity of TRUP to modulate receptor action in this manner represents another distinct mode of control among coregulators.

b. SUN-CoR. Zamir et al. (144) have isolated SUNCoR (small ubiquitous nuclear corepressor), a highly basic 16-kDa corepressor that shows no homology to either NCoR or SMRT. SUN-CoR contains an intrinsic repression domain and enhances silencing of basal transcription by TR and RevErb. The potential role of SUNCoR as an additional functional element in corepressor complexes is evinced by its interaction *in vivo* with NCoR.

5. Steroid hormone receptor repression. Steroid hormone receptors have little DNA-binding activity in the absence of hormone; indeed, steroid receptors, including PR and GR, are sequestered in ternary interactions with hsp90 and hsp70 (1). Recently, considerable effort has been devoted to discerning the mode of action *in vitro* of synthetic steroid hormone antagonists such as RU486 and 4-HT. These ligands induce receptor dimerization and DNA binding, but the resultant receptor dimer is ineffectual in stimulating transactivation. They act either as partial agonists or antagonists, in a manner contingent upon the tissue or promoter context. While the effects of these ligands have been attributed in part to their ability to disrupt interactions of receptor and coactivator (27, 29, 33, 66), recent evidence suggests that they may also induce active repression by nuclear receptors by promoting their association with transcriptional corepressors *in vitro*.

We have investigated the mode of action of RU486 as a PR antagonist and, by providing evidence for the involvement of a cellular corepressor in PR action, have introduced a novel concept in steroid hormone receptor action (145). Observing that PR and GR mutants lacking a short C-terminal portion of the receptor can be specifically activated by RU486 (146, 147), our group postulated the existence of an intrinsic repressor function in this domain that inhibited the transcriptional activity of the RU486-bound receptor. An amino acid sequence was defined in the C terminus of the PR that contained an intrinsic repressive function when fused to a heterologous DBD, indicating that this region interacted with a soluble corepressor (145). Mutations within this amino acid sequence in the full-length protein resulted in a PR that stimulated transcription in the presence of RU486. Competitive overexpression of the putative repressor domain activated the RU486-bound wild-type PR without affecting hormone-dependent transactivation, indicating titration of a cellular corepressor responsible for down-regulating the transcriptional activity of RU486-bound receptor.

A number of studies have since demonstrated the interaction of nuclear receptor corepressors with antagonist-bound steroid receptors. Smith et al. (148) demonstrated that SMRT abrogates the ability of mixed antiestrogen to activate transcription of an ER-dependent gene. Furthermore, *in vitro*
interaction assays have indicated an association between ER and SMRT in the presence of 4-HT. It was suggested that tissue-specific variations in corepressor expression might explain the ability of antagonists to evoke an agonist-like response in some tissues but not others. Intriguingly, it has also been demonstrated that SMRT interacts with ligand-bound ER, raising the possibility that corepressors modulate ligand-dependent activation by nuclear receptors (148). Additionally, RU486-bound PR functions as a transcriptional activator in the presence of unliganded TR or 4-HT-bound ER, but loses this ability in the presence of liganded TR or agonist-bound ER (149). In a yeast two-hybrid screen, Jackson et al. (71) have shown that NCoR interacted with antagonist-bound PR-LBD and that overexpression of NCoR and SMRT markedly suppressed RU486- and 4-HT-mediated partial agonist activity, an effect reversible, in the case of the PR, by overexpression of the PR LBD. Adding physiological significance to these data, Lavinsky et al. (150) have correlated decreased levels of NCoR with acquisition of hormone resistance in a mouse breast cancer model. Wagner et al. (151) demonstrated that NCoR and SMRT preferentially associate with antagonist-bound PR and that the partial agonist activity of RU486-bound PR is ablated by overexpression of NCoR and SMRT. In total, these results indicate that steroid receptors occupied by mixed agonists/antagonists such as RU486 or 4-HT are not intrinsically transcriptionally inactive, and that their transactivation functions may be masked by binding of corepressors (149). These observations point to the possible physiological role of mixed agonists/antagonists in steroid receptor action, and pose the question: could similar compounds exist in nature?

IV. Nuclear Receptors and Chromatin

A. Background

Eukaryotic chromosomes (herein referred to loosely as chromatin) are organized in the steady state into a regularly repeating protein DNA unit termed the nucleosome. The basic protein unit of the nucleosome is the histone, a small, highly basic, globular moiety. Solution of the low-resolution structure of the nucleosome core particle indicated a structure comprising a histone octamer, made up of two copies each of histones H2A, H2B, H3, and H4, around which was wrapped 1.7 turns of a left-handed DNA superhelix (152). Higher tiers of organization are thought to involve the assembly of nucleosomes into chromatin domains. The net effect of this arrangement is to create a thermodynamic barrier against the access of transcription factors to their DNA substrate. Recent higher resolution studies have established the fine structure of the nucleosome particle and have highlighted the role of the histone amino-terminal tails in making internucleosomal contacts (153). This arrangement has important consequences for our interpretation of the mode of action of two classes of molecules thought to regulate the access of transcription factors to their cognate DNA elements, namely acetylases (Section IV.C) and deacetylases (Section IV.E).

A multistep model has been envisaged for transcriptional activation by nuclear receptors (36, 154–156). Binding of the activated receptor to the enhancer region directs modification of the local chromatin structure into a transcriptionally permissive state (derepression), followed by recruitment of GTFs to form a preinitiation complex at the promoter (activation). This section reviews recent findings that substantiate this model, discussing the mechanisms by which coregulators, through intrinsic and recruited chromatin-modifying activities, are thought to manipulate chromatin and facilitate efficient transcriptional regulation by nuclear receptors. Covalent modification of the nucleosomal structure is regulated by the diametrically opposed activities of histone acetylation, correlated with gene activation, and histone deacetylation, generally associated with gene repression (Fig. 3). In addition, recruitment of ATPase complexes that effect noncovalent modifications of chromatin domains appears to be important for transcriptional regulation by nuclear receptors.

B. The MMTV and TRβA promoters

The functional consequences of the organization of hormone-responsive promoters in higher order chromatin structures is best illustrated by the MMTV and TRβA gene promoters. These promoters attest to the intimate structural and functional association between the DNA template and the protein component of chromatin.

The long terminal repeat sequences of the MMTV promoter are organized into a series of six positioned nucleosomes (157), directed by the primary nucleotide sequence of the promoter. The array is such that the cis-acting elements of the MMTV promoter adopt precise translational and rotational settings on the surface of the histone octamer that favor nuclear receptor binding while precluding the binding of the transactivators NF-1 and Oct-1. Several studies have documented a two-step model of synergistic enhancement of the MMTV promoter by steroid hormones and the NF-1 and Oct-1 transactivators, and the intrinsic role of the nucleosomal structure in this model (Ref. 158 and references therein). After induction by progestins, a rearrangement of the phasing of the nucleosomes exposes the NF-1 and Oct-1 sites and

Fig. 3. Simplified model of the biochemical basis of nucleosomal remodeling by histone acetyltransferases and histone deacetylases. Catalytic transfer of acetyl groups to the terminal amino groups of lysine residues of histones H2A, H2B, H3, and H4 histones by histone acetyltransferases (HATs) is thought to result in disruption of interactions between nucleosomes and DNA, between nucleosomes and neighboring nucleosomes, and possibly between nucleosomes and other proteins. The overall loss of compact nucleosomal structure facilitates access of transcriptional activators and coactivators to the promoter template. Conversely, recruitment of histone deacetylases (HDs) is thought to result in loss of the acetyl groups, reestablishing the coherence of the nucleosomal structure, and restricting access of transcription factors to the promoter. Other covalent modifications may also have a role in regulating nucleosome interactions.
primers the promoter for a rapid and synergistic response to these transcription factors.

Another promoter that exemplifies the influence of chromatin on events at hormone-inducible promoters is that of the Xenopus TRβA gene. Transcriptional initiation at this promoter is subject to autoregulation by thyroid hormone and TR (159). Wong et al. (156, 160) carried out a series of incisive experiments on the TRβA promoter using a Xenopus oocyte system, in which heterodimers of TR and RXR bound cognate HREs in vivo and were capable of alternately silencing or activating transcription in response to ligand. In the case of repression, simultaneous chromatin assembly and unliganded receptor heterodimer positioning were required for maximal transcriptional silencing, suggesting a synergistic role for chromatin in mediating silencing by the receptor. On the other hand, their results suggested that relief of this transcriptional repression by liganded TR comprises two distinct, independently regulated events: 1) extensive modifications of repressive chromatin structures, which are necessary but not sufficient to effect transcriptional initiation, and 2) interaction with GTFs resulting in assembly of a preinitiation complex (156, 160).

C. Coactivators and acetylation

Historically speaking, increased acetylation of histone tails has been correlated with transcriptional activity, whereas hypoacetylation has been associated with repression (161). The prevailing view has been that the major effect of the reduction of positive charge afforded by hyperacetylation of the amino-terminal histone tails is to uncouple their interaction with the negatively charged DNA, thereby creating an environment more accessible to transcription factors (Fig. 3). This theory has been modified somewhat by the recent solution of the nucleosome particles at 2.8 Å (153), which highlights nucleosomal-nucleosomal contacts made by the amino-terminal tails of histones, and suggests that an additional effect of selective acetylation of lysine residues in these tails may be to disrupt higher order chromatin structures (162).

Brownell et al. (163) identified histone acetyltransferase (HAT)-A, a Tetrahymena protein that contained acetyltransferase activity and showed close sequence similarity with the yeast transcriptional adaptor protein GCN5 (general control nonrepressed protein 5). Their discovery was the first indication that recruitment of histone acetylation activity by sequence-specific transcription factors might be involved in transcriptional regulation in eukaryotes. This was rapidly followed by the identification of the HAT activity of the general transcription factor TAFII250 (164), implying a role for histone acetylation in access of TFIID to the promoter template. Initial indications of the role of acetylation of core histones in transcriptional regulation by nuclear receptors emerged from the identification of the intrinsic HAT activity of p300/CBP-associated factor (PCAF; 165), identified as a mammalian counterpart of yeast GCN5. Interestingly, GCN5 was characterized as a component of the yeast ADA complex, which is known to mediate AF-2-dependent activation by RXR and ER (166). PCAF interacts with p300 and CBP both by in vitro pull-down and by in vivo coimmunoprecipitation. The HAT activity of PCAF primarily targets histones H3 and H4 as substrates, exhibiting a preference for histone H3. PCAF interacts directly in vitro with p300/CBP (165), hSRC-1 (167), ACTR/hSRC-3 (53), and nuclear receptors (36, 168), interactions that may serve to stabilize a functional complex of receptor, SRC family members, PCAF, and p300/CBP on the promoter. Recent evidence suggests that PCAF exists in stable, preformed complexes with histone-like TAFIIs in a manner akin to the arrangement of similar TAFIIs in the human GCN5 and yeast SAGA acetylase complexes (170). This striking finding raises the possibility of the evolutionary conservation of a mechanism whereby recruited GCN5/PCAF complexes assume the architectural role of local chromosomal histones during transcriptional activation.

HAT activity has also been identified as a property of the transcriptional coactivators p300 and CBP (171, 172). Unlike PCAF, CBP and p300 can acetylate all four core histone types and, whereas CBP exhibits no substrate specificity, p300 HAT activity is directed primarily toward histone H3. HAT activity is also conserved in members of the SRC family, including ACTR/hSRC-3 (53) and hSRC-1 (167), although no such activity has been identified in TIF2/hSRC-2. The intrinsic histone acetylase activity of hSRC-1 maps to a carboxy-terminal region of SRC-1 and is specific for histones H3 and H4. Korzus et al. (175) have suggested that the apparent redundancy of HAT activity among nuclear receptor coregulators may be due to the requirement by diverse promoters of different combinations of HAT activities at different promoters. In support of this, hSRC-1 (58) and SRC-3 (N. J. McKenna, unpublished) complexes are biochemically distinct from those of CBP, p300, and PCAF, suggesting that combinatorial assembly by liganded receptor of these subcomplexes into larger complexes could occur in a cell- or promoter-specific manner (58).

While the discussion to this point has emphasized the well-characterized role of cellular acetyltransferases in the catalytic acetylation of nucleosomal histones, it has become apparent recently that the spectrum of substrates for these enzymes extends to nonhistone proteins, implying a broader regulatory role for acetyltransferases in cellular signaling. Acetylation by p300 of p53 enhances the DNA-binding activity of this important sequence-specific activator (174). A recent striking finding showed that acetylation does not necessarily represent a positive impetus for transcription. Acetylation by Drosophila CBP of the wingless signaling pathway T-cell transcription factor (TCF) acts as a negative stimulus for signaling flux through this pathway (175). Data for the role of acetylation in directly regulating nuclear receptor function are as yet sparse, although our laboratory has shown that the acetyltransferase activity of PCAF targets zinc finger lysine residues in the DBD of PR (M. Burcin, personal communication). Although the functional consequences of this are as yet unclear, it may be that subtle covalent modifications such as these are important determinants of the association of receptor with its response element, and with coregulators, during transcriptional activation.

D. Chromatin-remodeling proteins

Increasing importance is being attached to recruitment by nuclear receptors of protein complexes that mediate chro-
matin remodeling, a term referring to the regulation of the coherence of the higher order chromatin domains into which nucleosomes are organized (Section IV.A). This section will summarize several proteins and protein complexes that have been suggested to be recruited by nuclear receptors to effect chromatin remodeling.

1. The SWI/SNF complex. Particularly well characterized in the process of chromatin remodeling are the products of the swi/snf genes. These genes were first identified in yeast on the basis of a genetic screen for genes required for regulation of mating type switching (176, 177). Genetic studies and biochemical purification also indicated that SWI/SNF proteins might form a complex that actively disrupted chromatin. Mutations in histone genes alleviate the requirement for functional SWI/SNF genes in yeast (178). Furthermore, SWI2/SNF2 has intrinsic ATPase activity (179), and purified SWI/SNF complex alters nucleosomal structure in vitro in an ATP-dependent manner (180, 181).

A wealth of data has implicated members of the SWI/SNF complex in transcriptional regulation by nuclear receptors. Yoshinaga et al. (182) showed that a yeast strain bearing mutations in the swi1, swi2, and swi3 genes was incapable of transactivating a reporter gene in the presence of cotransfected GR, whereas a wild-type strain was able to support GR-dependent transactivation. In addition, it was shown that GR communoprecipitated with the SWI/SNF complex (182). Purification of the mammalian homolog of the yeast SWI/SNF complex has identified two genes with a high degree of sequence similarity to swi2 and snf2, named brahma (brm) and brahma-related gene 1 (brg-1) for their similarity to the Drosophila brahma gene (183). The products of the human brm and brg-1 genes, hBRM and BRG-1, respectively, are reported to interact with ER in a ligand-dependent manner in a yeast two-hybrid assay (184). In addition, GR recruits the ligand-dependent nucleosomal remodeling activity of the SWI/SNF complex in yeast (185). Fryer and Archer (186) identified the dependence of GR regulation of a stably integrated MMTV promoter upon recruitment of BRG-1-containing complexes. A model for the role of HATs and chromatin-modifying enzymes in facilitating recruitment of a preinitiation complex by liganded receptor is shown in Fig. 4.

2. The TIF-1 proteins. Le Douarin et al. (187) have isolated a mouse protein, TIF-1α, which interacts with a RAR-LBD bait in a yeast two-hybrid screen. TIF-1α has been shown to complement RXRγ AF-2 activity in yeast in the presence of 9-cis-retinoic acid. Functional interactions in yeast have been demonstrated between TIF-1α and VDR, PR, and ER (188, 189). Paradoxically, however, TIF-1α down-regulates RXRα, RAR, and ER transactivation in mammalian transient transfection assays (187). Furthermore, when fused to a heterologous DBD, TIF-1α represses transcription (190).

Recent data suggest that a family of TIF-1 proteins exists, including TIF-1β and TIF-1γ in addition to TIF-1α (189, 191). This family is defined by an N-terminal domain containing a cysteine-histidine cluster (PHD or plant homeodomain), a RING finger, and a B box finger, domains thought to mediate DNA-protein and protein-protein interactions (192). While Le Douarin et al. (190) note that TIF-1β, unlike TIF-1α, does not interact with nuclear receptors, Chang et al. (193) have provided evidence that it interacts with GR and C/EBPβ to induce expression of the α1-acid-glycoprotein gene. Although their function in nuclear receptor action is unclear, the interactions of TIF-1 family members with heterochromatin-associated proteins indicate a potential role in chromatin modification. TIF-1α has been shown to interact with the heterochromatin-associated proteins mHP1α, MOD1 (HP1β), and MOD2 (HP1γ) which in turn interact with mSNF2-β, the mouse homolog of the Drosophila brahma protein (Section IV.D.1). Intriguingly, TIF-1α (189) and TIF1-β (191) associate with the KRAB (Krüppel-associated box) repression domain, a region conserved in many Krüppel-type zinc finger proteins. A model has been suggested for TIF-1s in transcriptional regulation, in which formation of transcriptionally inactive chromatin domains by TIF-1s effects repression, and ligand-dependent association of TIF-1s with receptors mediates formation of transcriptionally primed chromatin domains. An alternative mode of action for TIF-1s is suggested by the observation that TIF-1α is a protein kinase that targets the basal transcription factors TFIIIA, TAFII25, and TAFII55 for phosphorylation in vitro (194). Our own data suggest that TIF-1α exists in vivo as a component of stable preformed multiprotein complexes of approximately 1 megadalton (MDa) in size (N. J. McKenna, unpublished results).

3. NSD-1. The 280-kDa NSD-1 [nuclear receptor-binding, SET domain-containing protein 1 (63)] contains the evolutionarily conserved SET domain, first identified in the Drosophila proteins Su (var), E(z), and Trx (195). Certain SET proteins are...
thought to be associated with chromatin and commonly function, depending upon the developmental context, either as transcriptional coactivators, as corepressors, or both. For example, while E(z) appears to maintain target genes in a closed chromatin configuration during certain developmental stages, it can act as an activator (196). In contrast, Trx antagonizes the effect of E(z) by maintaining chromatin in a transcriptionally active conformation. These functionally antagonistic properties are also characteristic of NSD-1, which was identified by a two-hybrid screen for RARα-LBD interacting proteins. NSD-1 interacts with the LBD of ER and RARα in the presence of ligand, but its interactions with RXRα and TRα LBDs are reduced in the presence of ligand (63). Moreover, in addition to containing intrinsic activation domains and consensus NR boxes (Section II.B.2.e), NSD-1 harbors intrinsic repression domains. While its precise roles are unclear, NSD-1 has been proposed to be a bifunctional coregulator capable of modifying chromatin domains in a developmental stage-specific manner.

E. Corepressors and deacetylation.

Broadly speaking, histone deacetylation opposes the structural incoherence brought to bear upon nucleosomes by histone acetylation (Fig. 3). Extensive genetic studies in yeast have yielded abundant correlational evidence for the global role of hypoacetylation of histones in disabling transcriptional activity and have identified proteins whose mammalian homologs are key factors in transcriptional repression by nuclear receptors.

1. Histone deacetylases and Sin proteins. The product of the yeast RPD3 gene was isolated as a transcriptional repressor in several independent mutant suppressor screens (197, 198) and was shown to be required for the maximal range of transcriptional efficiency at certain yeast genes. In its absence, both activation and repression of target genes are less efficient (199), indicating a role of RPD-3 in global transcriptional regulation. Rundlett et al. (200) demonstrated that a subunit of yeast histone deacetylase activity showed sequence similarity with RPD3. The cloning of a mammalian homolog, histone deacetylase-1 (HD-1/HDAC-1; Ref. 201) established a functional link between histone deacetylation and transcriptional regulation in mammalian cells. HD-1 was isolated by affinity purification using the specific histone deacetylase inhibitor trapoxin. An RPD-3-containing complex, as well as HD-1/HDAC-1, is known to deacetylate core histones in vivo (200, 201). Yang et al. (202) used a yeast two-hybrid screen to study proteins interacting with the YY-1 transcription factor and identified a cDNA-encoding histone deacetylase-2 (mRPD3/HDAC-2), which bore extensive sequence identity with yeast RPD3. Colinear with the transcriptional regulatory functions of RPD3 are those of another yeast protein, Sin3 (RPD-1), initially identified as a negative regulator of the yeast HO gene (203). The inactivation of the SIN3 gene, along with other SIN genes, was shown to substitute for the requirement of the SWI5 gene product for HO transactivation (204). A model was proposed in which Sin3 effected repression at certain promoters by interaction with specific DNA-binding proteins.

2. Histone deacetylation and nuclear receptor repression. Studies in our laboratory were the first to document the involvement of SIN3 in repression of transcription by nuclear receptors. Nawaz et al. (205) demonstrated that SIN3 negatively regulated the transcriptional activity of the PR in a yeast-based promoter system. In addition, yeast strains harboring deletions in the SIN3 gene exhibited increased transactivation of a reporter gene in the presence of liganded PR. A wealth of evidence has since documented the role of mammalian Sin3 homologs and histone deacetylases in repression by nuclear receptors. Anti-NCoR antibodies have been shown to specifically immunoprecipitate cellular histone deacetylase activity (206–208). The in vivo requirement of Sin3 proteins and histone deacetylase activity by NCoR for repression by TR/RAR heterodimers in vivo has been indicated by the ability of anti-mSin3 and anti-mRPD3 antibodies to ablate silencing of a reporter gene by a Gal4DBD-NCoR fusion. Similar results were obtained for a Gal4-TRC (Gal4DBD fused to the TRα C-terminal repressor domain) indicating that the repressive effects of TR and NCoR/mSin3-linked histone deacetylase activity are colinear in mammalian cells (206). Laherty et al. (209) demonstrated the in vivo association of mammalian Sin3 with the two mammalian histone deacetylases, HD-1/HDAC-1 and HDAC-2. In addition, biochemical evidence suggests that Sin3 proteins and histone deacetylases exist in stable preformed complexes in mammalian cells (210, 211). Collectively, these data strongly support the hypothesis that nucleosomal condensation through recruitment of histone deacetylases by corepressors is part of the repertoire by which unliganded type II nuclear receptors inhibit the assembly of a preinitiation complex. An overall model of corepressor/coactivator action (168) envisages unliganded type II receptors maintaining a transcriptionally inactive steady state at the promoter by recruitment of corepressors and their associated histone deacetylase activities. Ligand binding is thought to induce release of corepressors and enable the receptor to recruit PCAF, p300/CBP, and SRC family members to effect local histone acetylation and creation of a transcriptionally permissive environment at the promoter.

3. NURD and Mi-2 ATPase complexes. An interesting footnote to the role of ATPase activity in facilitating transcriptional activation by nuclear receptors (Section IV.D.1) is the discovery that ATPase activity may also be harnessed to assist access of nuclear receptor corepressor complexes to promoters (212). The biochemically characterized NURD complex contains a subunit, MTA1, which was shown to contain a region previously identified in NCoR, and immunodepletion of NURD efficiently relieves transcriptional repression by unliganded TR. The coupling by NURD of ATP-dependent nucleosomal remodeling activity to histone deacetylation suggests that nucleosomal disruption may be a key preatory step in the access of histone deacetylase to its substrate. Wade et al. (211) presented similar data with respect to Mi-2, a SNF2-related ATPase (Section IV.D.1) that is present in a Sin3/deacetylase complex from Xenopus laevis. These results suggest that the acetylation status of histones and their higher order domain structure are not rigidly linked and may be independently manipulated by regulatory proteins.
V. Concluding Remarks

Recent developments in this field have sketched an increasingly complex picture of the functions of nuclear receptor and their associated coregulators. Daunting as it is, however, several strong themes are emerging from the study of this area. A consistently recurrent theme in transcriptional regulation by nuclear receptors is the fluid, multistep nature of the process, in which diverse factors are predicted to have temporally and spatially distinct functions at transcriptionally active promoters. Transcriptional regulation requires the recruitment by receptor of multiple, distinct enzyme activities — acetylases, deacetylases, kinases, ATPases, ligases, and proteases — the concerted action of which, intuitively, must be regulated efficiently to achieve an appropriate transcriptional response to ligand (Table 3). Coregulators are organized into preformed subcomplexes, an arrangement which 1) facilitates their assembly into multiple configurations and 2) makes them readily available to competing pools of transcriptional activators and promoters. Consistent with this level of organization is the notion that efficient activation at different promoters is a function of the assembly of distinct configurations of coregulator complexes at these promoters (172). The requirement of ubiquitin-protein conjugation enzymes for efficient activation by some receptors raises the intriguing possibility that enhancer/promoter clearance of enzymes for efficient activation by some receptors raises the intriguing possibility that enhancer/promoter clearance of transcriptional activators and promoters. Consistent with this level of organization is the notion that efficient activation at different promoters is a function of the assembly of distinct configurations of coregulator complexes at these promoters (172). The requirement of ubiquitin-protein conjugation enzymes for efficient activation by some receptors raises the intriguing possibility that enhancer/promoter clearance of transcriptional activators and promoters. Consistent with this level of organization is the notion that efficient activation at different promoters is a function of the assembly of distinct configurations of coregulator complexes at these promoters (172). The requirement of ubiquitin-protein conjugation enzymes for efficient activation by some receptors raises the intriguing possibility that enhancer/promoter clearance of transcriptional activators and promoters. Consistent with this level of organization is the notion that efficient activation at different promoters is a function of the assembly of distinct configurations of coregulator complexes at these promoters (172).

This review would be incomplete without a brief reference to the clinical and physiological implications of nuclear receptor coregulators. While mechanistic approaches continue to yield essential data, the full impact of these factors on transcriptional biology, and cell biology in general, will be felt as a shift in emphasis from molecular techniques to a more global perspective takes place. Future directions are certain to embrace fundamental questions such as whether (and how) nuclear receptor coregulators contribute to the increased, probably compensatory, expression of another SRC family member, mTIF2 (GRIP1/mSRC-2), in many tissues (Section II.B.2.d). The functions of nuclear receptor coregulators are governed by factors ranging from tissue-specific patterns of expression (Section II.B.4.a) to regulation of their expression by hormone (Section II.B.2.c), to environmental stimuli (II.B.4.d), to conserved amino acid sequences that determine their physical interaction with liganded receptor (Section II.B.2.e). A third theme is the potential of coregulators to act as adaptors to mediate functional interactions of receptors with diverse classes of transcription factors, and integrating receptor-regulated gene networks with a broad spectrum of afferent signals. Implicit in these themes is the prediction that the relative expression level of coactivators and corepressors is an important determinant of an appropriate and graded response to ligand by the target cell.

Table 3. Multifaceted nature of transcriptional regulation by nuclear receptor coregulators: nuclear receptors, through their interactions with coregulators, recruit diverse functional domains and enzyme activities to the promoter to achieve efficient transcriptional regulation in vivo

<table>
<thead>
<tr>
<th>Property</th>
<th>Coregulator</th>
<th>Target</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activation domain</td>
<td>SRC-1, TIF2/hSRC-2, RAC3/hSRC-3</td>
<td>Basal transcription factors</td>
<td>Stabilization of preinitiation complex</td>
<td>40, 47, 48, 54</td>
</tr>
<tr>
<td>Repression domain</td>
<td>NCoR, SMRT, SUNCoR</td>
<td>Basal transcription factors</td>
<td>Destabilization of preinitiation complex</td>
<td>121, 128</td>
</tr>
<tr>
<td>Acetylase</td>
<td>PCAF, CBP/p300, SRC-1, ACTR/hSRC-3</td>
<td>Core histones</td>
<td>Disruption of histone-DNA, histone-histone interactions</td>
<td>53, 165, 167, 171, 172, 173</td>
</tr>
<tr>
<td></td>
<td>p300</td>
<td>p53</td>
<td>Enhances p53 DNA binding</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>CBP</td>
<td>TCF</td>
<td>Uncouples Wingless signaling in Drosophila</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>PCAF</td>
<td>PR</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Deacetylase</td>
<td>HDAC-1/HDAC-2</td>
<td>Core histones, others?</td>
<td>Restoration of DNA-histone, histone-histone interaction</td>
<td>206–209</td>
</tr>
<tr>
<td>Protease</td>
<td>Siah2/26S proteosome</td>
<td>NCoR</td>
<td>Protein degradation</td>
<td>142</td>
</tr>
<tr>
<td>Ubiquitin ligase</td>
<td>E6-AP</td>
<td>Unknown</td>
<td>Protein degradation</td>
<td>68</td>
</tr>
<tr>
<td>ATPase</td>
<td>BRG-1, Trip-1</td>
<td>Chromatin, others?</td>
<td>Domain remodeling during activation</td>
<td>182, 184–186</td>
</tr>
<tr>
<td></td>
<td>SNF2 ATPase</td>
<td>Chromatin, others?</td>
<td>Domain remodeling during repression</td>
<td>211</td>
</tr>
<tr>
<td>Kinase</td>
<td>TFI1α</td>
<td>TFIIEα, TAFn28, TAFn35</td>
<td>Stabilization/destabilization of target proteins?</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>ER-associated kinase</td>
<td>?</td>
<td></td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>ANPK (AR-associated kinase)</td>
<td>AR coregulators?</td>
<td></td>
<td>216</td>
</tr>
</tbody>
</table>
etiology of the steroidial cancers of the breast, ovary, uterus, and prostate; their role in the myriad disorders of the endocrine system; and their value as prognostic, diagnostic, or therapeutic targets in such diseases. In addition, targeted deletions of coregulator genes will emerge as a powerful tool in the effort to discern the physiological functions of these factors. We foresee the maturation of these lines of research in the coming years, as this active field strives toward a coherent model of nuclear receptor action.

Acknowledgments

The authors wish to thank Barb Tykal for secretarial assistance. We thank Sophia Y. Tsai, Ming-Jer Tsai, and members of the O’Malley laboratory for valuable discussions during the preparation of the manuscript.

References

6. Housley PR, Sanchez ER, Danielsen M, Ringold GM, Pratt W 1990 Evidence that the conserved core in the steroid-binding domain of the glucocorticoid receptor is required for both optimal binding of hsp90 and protection from proteolytic cleavage. J Biol Chem 265:12778–12781
7. Picard D, Yamamoto K 1987 Two signals mediate hormone-dependent nuclear localisation of the glucocorticoid receptor. EMBO J 6:3333–3340
22. Ing NH, Beekman JM, Tsai SY, Tsai MJ, O’Malley BW 1992 Members of the steroid hormone receptor superfamily interact with TFIIH (S300–II). J Biol Chem 267:17167–17263
McKENNA, LANZ, AND O'MALLEY

40. Onate SA, Boonyaratankornkit V, Spencer TE, Tsai SY, Tsai MJ, Edwards DP, O'Malley BW 1998 The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J Biol Chem 273:12101–12108

41. Mcinerney EM, Tsai MJ, O'Malley BW, Katzenellenbogen BS 1996 Analysis of estrogen receptor transcriptional enhancement by a nuclear hormone receptor coactivator. Proc Natl Acad Sci USA 93:10069–10073

42. Ikonen T, Palvimo JJ, Janne OA 1997 Interaction between the amino- and carboxyl-terminal regions of the rat androgen receptor modulates transcriptional activity and is influenced by nuclear receptor coactivators. J Biol Chem 272:29821–29828

52. Wallfish PG, Yoganathan T, Yang YF, Hong H, Butt TR, Stallcup MR 1997 Yeast hormone response element assays detect and characterize GRIP1 coactivator-dependent activation of transcription by thyroid and retinoid nuclear receptors. Proc Natl Acad Sci USA 94:3697–3702

54. Li H, Gomes PJ, Chen JD 1997 Rac3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc Natl Acad Sci USA 94:8479–8484

70. Imhoff MO, McDonnell DP 1996 Yeast RPS5 and its human homolog RFP1 potentiate hormone-dependent activation of transcription by human progesterone and glucocorticoid receptors. Mol Cell Biol 16:2594–2605

72. Powers CA, Mathur M, Raaka BM, Ron D, Samuels HH 1998 TLS (translocated-in-liposarcoma) is a high-affinity inhibitor for steroid, thyroid hormone, and retinoid receptors. Mol Endocrinol 12:4–18

76. Fondell JD, Ge H, Roeder RG 1996 Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc Natl Acad Sci USA 93:8329–8333

77. Zhu Y, Qi C, Jain S, Rao MS, Reddy JK 1997 Isolation and characteri-
acterization of PBPs, a protein that interacts with peroxisome
88. Beck KD, Su, Varnell J, Chang CP, Burakoff DJ, Endrejum-
Bromage H, Tempst P, Friedman LP 1998 A novel protein complex
that interacts with the vitamin D3 receptor in a ligand-dependent
manner and enhances VDR transactivation in a cell-free system.
Genes Dev 12:1787–1800
89. Yuan CX, Ito M, Fondell JD, Fu ZY, Roeder RG 1998 The TRAP220
component of a thyroid hormone receptor-associated protein
(TRAP)-coactivator complex interacts directly with nuclear recep-
tors in a ligand-dependent fashion. Proc Natl Acad Sci USA 95:7939–7944
cofactor complex, SMCC, involved in transcription regulation. Mol Cell 3:97–108
92. Fondell JD, Guermah M, Malik S, Roeder RG 1999 Thyroid hor-
moneregulator-associated proteins and general positive cofactors
mediate thyroid hormone receptor function in the absence of the
TATA box-binding protein-associated factors of TFID. Proc Natl Acad Sci USA 96:7589–7594
93. Ge H, Roeder RG 1994 Purification, cloning, and characterization
of a human coactivator, PC4, that mediates transcriptional activa-
tion of class II genes. Cell 78:513–523
function 2 of the retinoid receptors. EMBO J 15:3093–3104
96. Mengus G, May M, Carre L, Champon P, Davidson I 1997 Human TAFII135 potentiates transcriptional activation by the AF-2 s of the
retinoic acid, vitamin D3, and thyroid hormone receptors in mam-
nalian cells. Genes Dev 11:1381–1395
97. Lee JW, Choi HS, Gyuris J, Brent R, Moore DD 1999 Two classes of
proteins dependent on either the presence or absence of thyroid hor-
monereceptor interaction with the thyroid hormone receptor. Mol Endocrinol 3:924–253
98. Treuter E, Johansson L, Thomsen JS, Wärmnick A, Leers J, Peltol-
Huikko M, Sjöberg M, Wright AP, Spyrou G, Gustafsson J 1999 Com-petition between thyroid hormone receptor-associated protein (TRAP) 220 and transcriptional intermediary factor (TIF) 2 for binding
99. Baudino TA, Kraichely DM, Jefcoat Jr SC, Winchester SK, Par-
terence JB, Livingston DM 1996 Role of CBP/p300 with the p300 coactivator. Science 275:523–527
100. Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, Evans RM 1996 Role of CBP/p300 in
binding protein is a coactivator for the androgen receptor and
102. Smith CL, O'Malley SA, Tsai MJ, O'Malley BW 1996 CREB binding
protein acts synergistically with steroid receptor coactivator-1 to
enhance steroid receptor-dependent transcription. Proc Natl Acad Sci USA 93:8884–8888
receptors have distinct affinities for coactivators: characterization
by Fluorescence resonance energy transfer. Mol Endocrinol 12:1594–1604
104. Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Ma-
105. Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Law-
rence JB, Livingston DM 1994 CREB with the p300 coactivator interacts with adenovirus E1A-associated 300 kD protein (p300)
binds to a protein with properties of a transcriptional adaptor. Genes Dev 8:869–884
MyoD. J Biol Chem 271:9009–9013
hormone receptor coactivator SRC-1 is a specific target of p300.
Proc Natl Acad Sci USA 93:10626–10631
receptor coactivator complex. Proc Natl Acad Sci USA 93:11540–11545
110. Kraus WL, Kadonaga JT 1998 p300 and estrogen receptor coop-
eratively activate transcription via differential enhancement of ini-
tiation and reinitiation. Genes Dev 12:331–342
111. Hudson LG, Stanton JB, Glass CK, Gill GN 1990 Ligand-activated
thyroid hormone and retinoic acid receptors inhibit growth factor
receptor promoter expression. Cell 62:1165–1175
112. Glass CK, Lipkin SM, Deavry OV, Rosenfeld MG 1989 Positive
and negative regulation of gene transcription by a retinoic acid-
thyroid hormone receptor heterodimer. Cell 59:697–708

Nuclear Receptor Coregulators 2000, 498–511

113. Glass CK, Lipkin SM, Deavry OV, Rosenfeld MG 1989 Positive and
114. Glass CK, Lipkin SM, Deavry OV, Rosenfeld MG 1989 Positive and
115. Glass CK, Lipkin SM, Deavry OV, Rosenfeld MG 1989 Positive and
116. Glass CK, Lipkin SM, Deavry OV, Rosenfeld MG 1989 Positive and

118. Baniahmad A, Kohne AC, Renkawitz R 1997 The α activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing. Mol Cell Biol 17:76–86

120. Seo W, Mohon MJ, Lee YK, Moore DD 1996 Two receptor interacting domains in the nuclear hormone receptor corepressor RIP13/N-CoR. Mol Endocrinol 10:1646–1655

123. Shibata H, Nawaz Z, Tsai SY, O'Malley BW, Tsai MJ 1997 Gene silencing by chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) is mediated by transcriptional corepressors, nuclear receptor-corepressor (N-CoR) and silencing mediator for retinoic acid receptor and thyroid hormone receptor (SMRT). Mol Endocrinol 11:714–724

127. Sande S, Privalsky ML 1996 Identification of TRACs (T3 receptor-associated cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. Mol Endocrinol 10:813–825

129. Wong CW, Privalsky ML 1998 Transcriptional silencing is defined by isoform- and heterodimer-specific interactions between nuclear hormone receptors and corepressors. Mol Cell Biol 18:5724–5733

130. Tsai S, Collins SJ 1993 A dominant negative retinoic acid receptor blocks neutrophil differentiation at the promyelocyte stage. Proc Natl Acad Sci USA 90:7153–7157

131. Yoh SM, Chatterjee VK, Privalsky ML 1997 Thyroid hormone resistance syndrome manifests as an aberrant interaction between mutant T3 receptors and transcriptional corepressors. Mol Endocrinol 11:470–480

132. Tagami T, Madison LD, Nagaya T, Jameson JL 1997 Nuclear receptor corepressors activate rather than suppress basal transcription of genes that are negatively regulated by thyroid hormone. Mol Cell Biol 17:2642–2652

140. Xu J, Nawaz Z, Tsai SY, Tsai MJ, O'Malley BW 1996 The extreme C terminus of progesterone receptor contains a transcriptional repressor domain that functions through a putative corepressor. Proc Natl Acad Sci USA 93:12195–12199

142. Lanz RB, Rusconi S 1994 A conserved carboxy-terminal subdomain is important for ligand interpretation and transactivation by nuclear receptors. Endocrinology 135:2183–2195

148. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ
1997 Crystal structure of the nucleosome core particle at 2.8 A
resolution. Nature 389:251–263

factor loading on the MMTV promoter: a bimodal mechanism for
promoter activation. Science 255:1573–1576

155. Mymryk JS, Archer TK 1995 Dissection of progesterone receptor-
mediated chromatin remodeling and transcriptional activation

156. Wong J, Shi YB, Wolfe AP 1997 Determinants of chromatin disrup-
tion and transcriptional regulation instigated by the thyroid
hormone receptor: hormone-regulated chromatin disruption is not
sufficient for transcriptional activation. EMBO J 16:3138–3171

157. Richard-Foy H, Hager GL 1987 Sequence-specific positioning of
nucleosomes over the steroid-inducible MMTV promoter. EMBO J
6:2321–2323

induces binding of receptors and transcription factors to a rear-
ranged nucleosome on the MMTV promoter in vivo. EMBO J 14:
1727–1731

159. Ranjan M, Wong J, Shi YB 1994 Transcriptional repression of
Xenopus TRβ gene is mediated by a thyroid hormone response
element located near the start site. J Biol Chem 269:24699–24705

160. Wogan GN, Shi YB, Wolfe AP 1995 A role for nucleosome assembly
in both silencing and activation of the Xenopus TRβ gene by the
thyroid hormone receptor. Genes Dev 9:2696–2711

161. Wolfe AP, Pruss D 1996 Targeting chromatin disruption: tran-
scription regulators that acetylate histones. Cell 84:817–819

162. Rhodes D 1997 The nucleosome core all wrapped up. Nature
389:231–233

Roth SY, Allis CD 1996 Tetrahexylmethane histone acetyltransferase
A: a homolog to yeast Gcn5p linking histone acetylation to gene
activation. Cell 84:843–851

164. Mizen CA, Yang XJ, Kurokawa R, McInerney E, Richard-Foy H,
Archer TK, Lefebvre P, Wolford RG, Hager GL 1997 Crystal structure of the nucleosome core particle at 2.8 A

165. Gu W, Roeder RG 1997 Activation of p53 sequence-specific DNA
binding by acetylation of the p53 C-terminal domain. Cell 90:595–
606

166. Welter L, Bienz M 1998 Drosophila CBP represses the transcription

167. Breeden L, Nasmyth K 1997 Cell cycle control of the yeast HO gene-

168. Winston F, Carlson M 1992 Yeast SNF/SWI transcriptional activa-
tors and the SPT/SIN chromatin connection. Trends Genet
8:387–391

169. Laurent BC, Treich I, Carlson M 1993 The yeast SNF2/SWI protein
has DNA-stimulated ATPase activity required for transcriptional
activation. Genes Dev 7:583–591

170. Cote J, Quinn J, Workman JL, Peterson CL 1994 Stimulation of
GAL4 derivative binding to nucleosomal DNA by the yeast SWI/
SNF complex. Science 265:53–60

171. Imbalzano AN, Kwon H, Green MK, Kingston RE 1994 Facilitated
binding of TATA-binding protein to nucleosomal DNA. Nature
370:481–485

Roles of SWI1, SWI2, and SWI3 proteins for transcriptional en-
hancement by steroid receptors. Science 258:1598–1604

cerevisiae SNF2/SWI and Drosophila brm genes potentiates tran-
scriptional activation by the glucocorticoid receptor. EMBO J 12:
6299–6307

174. Ichinose H, Garnier JM, Chambon P, Losson R 1997 Ligand-
dependent interaction between the estrogen receptor and the hu-
man homologues of SW1/SNF2. Gene 188:95–100

stimulates nucleosome disruption by the SW1/SNF complex. Mol
Cell Biol 17:895–905

176. Fryer CJ, Archer TK 1998 Chromatin remodelling by the glucocor-
icoid receptor requires the BRG1 complex. Nature 393:88–91

177. Le Douarin B, Zechel C, Garnier JM, Lutz Y, Tora L, Pierrat P,
Heery D, Gronemeyer H, Chambon P, Losson R 1995 The N-
terminal part of TFIIF, a putative mediator of the ligand-dependent
activation function (AF-2) of nuclear receptors, is fused to B-naph-
in the oncogenic protein T18. EMBO J 14:2020–2033

interaction of nuclear receptors with the putative human transcrip-

179. Le Douarin B, Nielsen AL, Garnier JM, Ichinose H, Jeamougin
F, Losson R, Chambon P 1996 A possible involvement of TFIIfa and
TFIIfB in the epigenetic control of transcription by nuclear recep-
tors. EMBO J 15:6701–6715

TFIIfa: a possible link between KRAB zinc finger proteins and

W, Stillman DJ, Dorland S, Yu Y 1997 The yeast Ada complex med-
iates the ligand-dependent transcriptional stimulation. Cell 94:
45–53

182. Ichinose H, Garnier JM, Chambon P, Losson R, Tora L, Pierrat P,
Heery D, Gronemeyer H, Chambon P, Losson R 1997 Ligand-
dependent interaction between the estrogen receptor and the hu-
man homologues of SW1/SNF2. Gene 188:95–100

W, Stillman DJ, Dorland S, Yu Y 1997 The yeast Ada complex med-
iates the ligand-dependent transcriptional stimulation. Cell 94:
45–53

184. Ichinose H, Garnier JM, Chambon P, Losson R, Tora L, Pierrat P,
Heery D, Gronemeyer H, Chambon P, Losson R 1997 Ligand-
dependent interaction between the estrogen receptor and the hu-
man homologues of SW1/SNF2. Gene 188:95–100

W, Stillman DJ, Dorland S, Yu Y 1997 The yeast Ada complex med-
iates the ligand-dependent transcriptional stimulation. Cell 94:
45–53

186. Ichinose H, Garnier JM, Chambon P, Losson R, Tora L, Pierrat P,
Heery D, Gronemeyer H, Chambon P, Losson R 1997 Ligand-
dependent interaction between the estrogen receptor and the hu-
man homologues of SW1/SNF2. Gene 188:95–100

W, Stillman DJ, Dorland S, Yu Y 1997 The yeast Ada complex med-
iates the ligand-dependent transcriptional stimulation. Cell 94:
45–53