Predictors of mortality in patients with left-side infective endocarditis, the ESC-EORP EURO-ENDO registry


1 University Hospital Vall d’Hebron, Cardiology, Barcelona, Spain; 2 Hospital Clinico San Carlos, Madrid, Spain; 3 Henri Mondor University Hospital Chenevier APHP, Creteil, France; 4 Hospital Universitario Alvaro Cunqueiro, Vigo, Spain; 5 University Hospital of Amiens, Amiens, France; 6 University Hospital Centre Zagreb, Zagreb, Croatia; 7 Asan Medical Center, Seoul, Korea (Republic of); 8 Maastricht University Medical Centre (MUMC), Maastricht, Netherlands (The); 9 Addenbrooke’s Hospital, Cambridge, United Kingdom; 10 APHM La Timone Hospital, Marseille, France; 11 Bichat Hospital, University Paris-Diderot, INSERM-U1148, FACT French Alliance for Cardiovascular T, Paris, France; 12 Anthea Hospital, Bari, Italy

On behalf of EURO-ENDO Investigators

Funding Acknowledgement: Type of funding sources: Private grant(s) and/or Sponsorship. Main funding source(s): ESC-EORP EURO-ENDO project from the ESC society

Background/Introduction: Infective endocarditis (IE) is associated with high in-hospital mortality, ranging from 16% to 25%, despite improvement in diagnostic and therapeutic strategies, mainly due to complications and heterogeneity of the disease. Baseline risk stratification is essential, in order to focus an aggressive management toward high-risk patients.

Purpose: We sought to assess the association between surgery and 30-day mortality rate as related to vegetation size.

Methods: The ESC-EORP EURO-ENDO registry is a prospective multicentre observational study of patients presenting with definite or possible IE in Europe and ESC-affiliated/non-affiliated countries. Patients were included from January 2016 to 31 March 2018 in 156 centers from 40 countries. Clinical data, blood test analysis and multi-modality imaging tests (echocardiography, computed tomography, PET-CT, magnetic resonance) were collected. Primary endpoint was 30-day mortality. Multivariable logistic regression analysis was performed to assess variables associated with 30-day mortality. Besides, univariable analysis was performed to assess best vegetation size cut-off related to 30-day mortality.

Results: Among 2171 patients with left-side IE, 257 patients (11.8%) died during the first 30 days of IE diagnosis. Patient characteristics and univariable analysis are summarized in TABLE 1. Cut-off value for best vegetation size related to 30-day mortality was vegetation length >14mm, with a HR =2.00 (95% CI 1.59–2.51, p <0.0001) and a Harrell’s Concordance of 0.58. After multivariable logistic regression analysis, factors associated with 30-day mortality risk were: vegetation size >14mm (OR =2.68, 95% CI [1.96–3.67], p <0.0001), previous stroke or transient ischemic attack (TIA) (OR =1.60, 95% CI [1.07–2.40], p=0.0235), creatinine >2mg/dL (OR =2.45, 95% CI [1.73–3.47], p <0.0001), presence of embolic events (OR =2.64, 95% CI [1.80–3.74], p <0.0001), hemorrhagic stroke (OR=3.71, 95% CI [2.57–4.77], p<0.0001) and no cardiac surgery during the event (OR =4.07, 95% CI [2.93–5.67], p<0.0001). The C-statistic of the logistic model to predict 30-day mortality was 0.795.

Conclusion: Left-side infective endocarditis had a high 30-day mortality rate (11.8%). Presence of a large vegetation size (>14mm), embolic events, hemorrhagic stroke, renal failure, presence of heart failure or cardiogenic shock were associated with an increase in 30-day mortality. Performing cardiac surgery had a protective effect.