Coronary flow velocity reserve during exercise stress echocardiography in hypertrophic cardiomyopathy

E.D. Palinkas1, A. Palinkas2, A. Zagatina3, K. Wierzbowska-Drabik4, A. D'Andrea5, Q. Ciampi6, R. Sepp7, V. Nagy7, I. Olivotto8, E. Picano9

1University of Szeged, Doctoral School of Clinical Medicine, Szeged, Hungary
2Csongrád-Csanád County Health Care Center, Hódmezovásárhely-Mákó, Department of Internal Medicine, Hódmezovásárhely, Hungary
3Research Cardiology Center “Medika”, Cardiology Department, Saint Petersburg, Russian Federation
4Medical University of Lodz, Department of Internal Diseases and Clinical Pharmacology, Lodz, Poland
5Umberto I Hospital, Nocera Inferiore, Department of Cardiology, Unit of Cardiology and Intensive Coronary Care, Naples, Italy
6Fatebenefratelli Hospital of Benevento, Benevento, Italy
7University of Szeged, Division of Non-Invasive Cardiology, Department of Internal Medicine, Szeged, Hungary
8IRCCS Meyer Children’s Hospital, Cardiology Unit, Florence, Italy
9CNR – National Research Council, Institute of Clinical Physiology, Pisa, Italy

Funding Acknowledgements: None.

Background: Coronary flow velocity reserve (CFVR) can be assessed with transthoracic echocardiography (TTE) as the stress/rest ratio of coronary flow velocity (CFV). Reduced CFVR during vasodilator stress (adenosine or dipyridamole) is a powerful predictor of adverse outcomes in hypertrophic cardiomyopathy (HCM). However, the feasibility and correlates of CFVR during the more physiological - and recommended - exercise stress echocardiography (ESE) is unresolved.

Aim: To assess the feasibility and functional correlates of CFVR during exercise in HCM.

Methods: We studied 56 HCM patients (age=49±13 years, 33 [59%] males) and 44 age- and sex-matched healthy subjects with symptom-limited semi-supine ESE. ESE assessment included CFVR (stress/rest diastolic CFV) in the mid-distal left anterior descending coronary artery, systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate reserve (HRR, peak/rest heart rate).

Results: CFVR was feasible in 46/56 HCM patients and in 41/44 controls (82% vs 93%, p=0.138). Median CFVR was significantly lower in patients with HCM compared to controls (1.72 [1.48; 2.10] vs 2.57 [2.25; 3.30], p<0.001), see Figure 1. In HCM patients, among resting parameters, CFVR was inversely correlated with left ventricular maximal septal thickness (r=-0.308, p=0.038), end-systolic diameter (r=-0.393, p=0.007), resting DBP (r=-0.398, p=0.006) and resting SBP (r=-0.321, p=0.030), while in controls CFVR correlated only with resting DBP (r=-0.322, p=0.040). During exercise, HCM patients with lower CFVR (<1.72, i.e. 1.72) showed lower peak CFV (78±20 vs 96±24 cm/s, p=0.003) and lower HRR (1.55±0.29 vs 1.76±0.25, p=0.020), see Figure 2. Exercise duration, peak stress workload or metabolic equivalents were not related to CFVR. In multivariable analysis, resting CFV (b=-0.034, 95% CI -0.037 and -0.030, p<0.001), resting SBP (b=-0.003, 95% CI -0.005 and -0.001, p=0.20), peak stress CFV (b=0.019, 95% CI 0.017 and 0.021, p<0.001) and HRR (b=0.126, 95% CI 0.005 and 0.247, p=0.041) were independently associated with CFVR.

Conclusion: CFVR assessment by TTE in the left anterior descending coronary artery is feasible during semi-supine exercise in most HCM patients. CFVR is markedly reduced in HCM patients on effort, particularly in the presence of high resting CFV and low HRR.
Figure 1. Coronary flow velocity reserve elicited by exercise is significantly lower in patients with hypertrophic cardiomyopathy compared to age- and sex-matched healthy controls. HCM: hypertrophic cardiomyopathy.

Figure 2. Greater heart rate reserve is associated with greater coronary flow velocity reserve during exercise in hypertrophic cardiomyopathy.