Machine learning for in-hospital cardiac events prediction in patients with acute coronary syndrome: results from ADDICT-ICCU study

E. Gall1, J.G. Dillinger1, K. Hamzi2, M. Elbaz3, E. Gerbaud4, N. El Beze5, A. Lequipar1, S. Toupin2, F. Picard6, A. Trimaille7, M. Goralski8, M. Bedossa9, A. Boccara10, T. Pezel1, P. Henry1

1Hospital Lariboisiere, Cardiology, Paris, France
2Hospital Lariboisiere, Machine Learning and Research, Paris, France
3Toulouse Rangueil University Hospital (CHU), Cardiology, Toulouse, France
4Hospital Haut Leveque, Cardiology Intensive Care Unit and Interventional Cardiology, Bordeaux, France
5Hospital Bichat-Claude Bernard, Cardiology, Paris, France
6Hospital Cochin, Cardiology, Paris, France
7University Hospital of Strasbourg, Cardiology, Strasbourg, France
8Hospital Center Regional d’Orleans, Cardiology, Orleans, France
9Hospital Pontchaillou of Rennes, Cardiology, Rennes, France
10Andre Gregoire Intercommunal Hospital Center, Cardiology, Montreuil, France

On behalf of ADDICT-ICCU Investigators

Funding Acknowledgements: Type of funding sources: Foundation. Main funding source(s): Fondation Coeur et Recherche

Background: Acute coronary syndrome (ACS) remains a major cause of mortality worldwide. However, the accuracy of current prediction tools for in-hospital cardiac events after an ACS remains insufficient for individualized patient management strategies.

Purpose: To assess in patients with ACS the feasibility and accuracy of machine learning (ML)-based model using all data available at admission to predict in-hospital cardiac events.

Methods: We conducted a sub-study of ADDICT-ICCU registry, an observational prospective study including all consecutive patients admitted to intensive cardiac care unit (ICCU) in 39 centres throughout France between 7 and 22 April 2021. We evaluated 16 clinical, 4 biological and 6 transthoracic echocardiogram (TTE) features. ML involved automated feature selection with model building by random forest (RF), and then hyperparameter tuning was done by repeated cross-validation. The primary outcome was the occurrence of composite outcomes defined by death, resuscitated cardiac arrest or cardiogenic shock requiring medical and/or mechanical haemodynamic support.

Results: Of 1,499 consecutive patients, 765 (mean age 63 ± 15 years, 70% male) were admitted for ACS. The overall in-hospital cardiac events rate for ACS patients was 4.0 %. Feature selection was performed using RF with the log-rank–based variable importance, and 6 of the available features at admission were selected for the RF model (1 clinical, 1 biological, and 4 from TTE) including mean blood pressure, renal function, cardiac output, filling pressures, tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure. The ML model exhibited a higher area under the curve compared with TIMI score, GRACE score, and traditional stepwise model score for prediction of in-hospital cardiac events (ML score: 0.96 vs TIMI: 0.54, GRACE: 0.68, traditional stepwise score: 0.87; all P < 0.001).

Conclusions: The ML-model exhibited a higher prognostic value to predict in-hospital cardiac events compared with all traditional scores.
ML model for MACEs prediction
ML for In-Hospital Major Adverse Events Prediction

ML model performance (AUC)