Assessment of aortic valve function in over 47,000 people using deep learning

S. Kany1, J. Ramo1, C. Hou1, S. Jurgens1, V. Nauffal2, J. Cunningham3, E. Lau4, A. Butte4, J. Ho5, J. Olgin6, S. Elmariah6, M. Lindsay3,
P. Ellinor1, J.P. Pirruccello6

1Broad Institute, Cambridge, United States of America
2Brigham and Women’s Hospital, Boston, United States of America
3Massachusetts General Hospital - Harvard Medical School, Boston, United States of America
4University of California - San Francisco, Bakar Computation Health Sciences Institute, San Francisco, United States of America
5Beth Israel Deaconess Medical Center, Boston, United States of America
6UCSF Cardiovascular Care, San Francisco, United States of America

Funding Acknowledgements: Type of funding sources: Public grant(s) – National budget only. Main funding source(s): NIH, AHA

Background: Aortic valve (AV) stenosis (AS) is associated with a high global burden of mortality and morbidity. Previous studies suggest that even mild AS is associated with worse outcomes, prompting interest in AV function in a healthy population. The UK Biobank is a prospective cohort study with ~500,000 participants of whom ~10% have undergone cardiovascular MRI (cMRI).

Purpose: We aimed to develop a deep learning model to study AV function in cMRI at population level in the UK Biobank.

Methods and Results: We developed a U-Net based segmentation model with a ResNet34 encoder to study the velocity-encoded image series, computing peak velocity (cm/sec), mean peak gradient ("mean gradient"; mmHg), and aortic valve area (cm2) (AVA) in 47,223 participants.

Next, we calculated reference values stratified by age and sex in participants without CVD. In healthy individuals (n=31,909), AVA was lower in older age groups, whereas peak velocity and mean gradient remained similar across age groups. Compared to women, men had greater AVA but similar peak velocity and mean gradient estimates.

In the biomarker analysis (taken ~9.5 years before cMRI), we observed an association of apolipoprotein B (ApoB) (0.033 SD increase per SD, \(P=3.1 \times 10^{-12} \)) and lipoprotein a (Lp (a)) (0.027 SD increase, \(P=4.8 \times 10^{-07} \)) with higher peak velocity. Using Mendelian Randomization, we found genetic evidence that Lp(a) causally contributes to higher peak velocity (\(\beta=0.04, P=6.4 \times 10^{-10} \)) and smaller AVA (\(\beta=-0.056, P=1.3 \times 10^{-4} \)). Similarly, ApoB causally contributes to higher peak velocity (\(\beta=0.072, P=1.3 \times 10^{-6} \)) and smaller AVA (\(\beta=-0.065, P=1.3 \times 10^{-5} \)) in Mendelian Randomization.

Peak velocity was strongly associated with incident AV surgery (N=72, Hazard ratio (HR) 2.40 per SD, \(P=3.1 \times 10^{-12} \)) and AS (N=123, HR 2.10, \(P=7.7 \times 10^{-13} \)). The predictive power for AS was higher when using the top 10% vs the remaining 90% of distribution for mean gradient (N in top 10% with event=87, HR 24.91, \(P=2.4 \times 10^{-43} \)) and peak velocity (N=92, HR 33.01, \(P=3.0 \times 10^{-43} \)). After excluding individuals with at least mild aortic stenosis (peak velocity >2m/sec, mean gradient >20mmHg, AVA >1.5 cm2) the top 10% of the remaining population was still highly predictive for AS using mean gradient (N=30, HR 8.90, \(P=9.4 \times 10^{-15} \)) and peak velocity (N=35, HR 13.15, \(P=1.6 \times 10^{-18} \)).

Conclusion: We found both epidemiological and causal genetic evidence that elevated ApoB and Lp(a) cause a reduction in AVA. Even aortic velocities below the threshold for mild AS were predictive of future clinical disease, suggesting that there may be a role for monitoring at AVA below the current threshold for mild AS. Future work is needed to understand whether clinical outcomes are better predicted by universal or sex-specific cutoffs.
Figure 1: Workflow of deep learning mode
HR of incident valvular disease