The prognostic value of left ventricular entropy derived from native T1 mapping in patients with hypertrophic cardiomyopathy

J. Wang1, J.Q. Zhang1, L.T. Pu1, G.V. Gkoutos2, Y.C. Han3, Y.C. Chen1

1West China Hospital, Sichuan University, Chengdu, China
2University of Birmingham, College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Birmingham, United Kingdom
3Ohio State University Hospital, Cardiovascular Division, Wexner Medical Center, Ohio, United States of America

Funding Acknowledgements: Type of funding sources: Foundation. Main funding source(s): This work was supported by grants from the National Natural Science Foundation of China [Grant Number: 82202248] and Natural Science Foundation of Sichuan province [Grant Number: 23NSFSC4589].

Background: The prognostic value of left ventricular (LV) entropy in hypertrophic cardiomyopathy (HCM) is unclear.

Objectives: This study aimed to assess the prognostic value of LV entropy from T1 mapping in HCM.

Methods: In this prospective study, 748 participants with HCM, who underwent cardiovascular MRI, were consecutively enrolled. LV entropy was quantified by native T1 mapping to estimate tissue heterogeneity. A multivariable Cox proportional hazards regression was performed to identify potential associations of LV entropy with sudden cardiac death (SCD) and cardiovascular death (CVD).

Results: Among the 748 participants (mean age, 51 ± 14.2 years; 454 men), 40 (5.3%) experienced SCD, and 65 (8.7%) experienced CVD during a median follow-up of 43 months. Participants with increased LV entropy (≥ 5.86) were more likely to suffer from SCD (P < 0.001 and P = 0.03) and CVD (P < 0.001 and P = 0.02) in the entire cohort and the subgroup with low late gadolinium enhancement (LGE) extent (<10%), respectively. In multivariable Cox analysis, following adjustment for the European Society of Cardiology predictors and the presence or absence of high LGE extent (≥10%), LV mean entropy was an independent predictor of SCD (hazard ratio [HR] 1.04, 95% CI 1.0 - 1.08, P = 0.03) and CVD (HR 1.06, 95% CI 1.04 - 1.09, P < 0.001). An SCD and CVD predictive model that encompassed a combination of LV entropy and LGE was developed, and an internal validation showed that the derived models retained good predictive ability with a C-index of 0.71 to 0.74 and 0.81 ± 0.03 for SCD and CVD, respectively.

Conclusions: LV mean entropy derived from native T1 mapping, reflecting myocardial tissue heterogeneity, was an independent predictor of SCD and CVD in participants with HCM and could help improve risk stratification.

Figure 1 Kaplan-Meier Analyses.
Figure 2 Incremental Value of LV entropy