ECG-based deep learning for detecting epicardial coronary occlusion in acute myocardial infarction

R. Herman1, H.P. Meyers2, S.W. Smith3, A. Demolder4, D.T. Bertolone1, A. Leone1, K. Bempeis1, M.M. Viscusi4, V. Boza5, V. Kresnakova4, M. Martonak4, L. Per6, R. Hatala5, J. Bartunek7, E. Barbato8

1University of Naples Federico II, Department of Advanced Biomedical Sciences, Naples, Italy
2Atrium Health, Department of Emergency Medicine, Charlotte, United States of America
3University of Minnesota, Department of Emergency Medicine, Minneapolis, United States of America
4Powerful Medical, AI Research, Bratislava, Slovakia
5Rabin Medical Center, Department of Cardiology, Petah Tikva, Israel
6The National Institute of Cardiovascular Diseases, Department of Arrythmia and Pacing, Bratislava, Slovakia
7Cardiovascular Research Center Aalst, Aalst, Belgium
8Sapienza University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy

Funding Acknowledgements: Type of funding sources: Public Institution(s). Main funding source(s): CardioPath Ph.D. Programme

Background: One third of Non-ST-elevation myocardial infarction (NSTEMI) patients have occlusion myocardial infarction (OMI) associated with poor short- and long-term outcomes due to delayed invasive management.

Purpose: We sought to develop and externally validate a versatile artificial intelligence (AI)-model detecting OMI on single standard 12-lead electrocardiograms (ECGs) and compare its performance to existing state-of-the-art criteria.

Methods: An AI model was developed using 18,616 ECGs from 10,692 unique contacts (22.9% OMI) of 10,543 patients (age 66 ± 14 years, 65.9% males) with acute coronary syndrome (ACS) originating from an international database and a tertiary care center. This AI model was tested on a holdout set of 3,254 ECGs from 2,263 unique contacts (20% OMI) of 2,222 patients (age 62 ± 14 years, 67% males) and compared with STEMI criteria and annotations of ECG experts in detecting OMI on 12-lead ECGs using sensitivity, specificity, and predictive values.

Results: The OMI AI model achieved an AUROC of 0.941 (95% CI: 0.926, 0.954) in identifying the primary outcome of OMI on 12-lead ECGs in the holdout set [Figure 1A], yielding robust performance across genders and age subgroups (ranging from 0.907 to 0.951 AUROC) [Figure 1B]. Sensitivity in detecting OMI was significantly higher for OMI AI model compared to STEMI criteria (82.6% [95% CI: 78.9%, 86.1%] vs. 34.4% [95% CI: 30.0%, 38.8%]) and statistically equal compared to ECG experts 75.9% [95% CI: 71.9%, 80%] in identifying OMI [Table 1]. The OMI AI Model showed statistically superior performance compared to STEMI criteria and equal (non-inferior) performance to ECG experts when evaluated using industry-standard metrics.

Conclusions: This sizeable validation of an AI ECG model demonstrates the ability of AI to detect acute OMI and suggests a potential in improving ACS patient triage and need for immediate revascularization.

A. ROC Curves on Testing Dataset (n = 2,263 contacts [20.02% OMI]; n = 3,254 ECGs)

B. Parameter	Cat	No. ECGs (%)	Sens.	Spec.	PPV	NPV	AUC
Gender	Male	2219 (68.19%)	0.758	0.919	0.818	0.888	0.910
Female	1035 (31.81%)	0.793	0.931	0.730	0.950	0.934	
Age subgroups	≤65	328 (10.08%)	0.770	0.959	0.810	0.948	0.951
>65	1417 (43.55%)	0.782	0.896	0.756	0.909	0.920	
QRS duration	<120	2806 (86.23%)	0.789	0.918	0.794	0.915	0.924
≥120	448 (13.77%)	0.595	0.958	0.825	0.878	0.873	
Rhythm	Sinus	2897 (89.03%)	0.767	0.918	0.790	0.908	0.915
Paced AF	133 (4.09%)	0.600	0.944	0.714	0.911	0.851	
VII	898 (27.60%)	0.735	0.926	0.778	0.908	0.900	
LBBB	246 (7.56%)	0.557	0.932	0.765	0.841	0.839	
RBBB	548 (16.84%)	0.726	0.976	0.907	0.916	0.916	
BPM	<100	379 (11.65%)	0.848	0.952	0.921	0.904	0.961
≥100	2875 (88.35%)	0.749	0.920	0.773	0.910	0.909	

Figure 1. AI model performance on the overall holdout set and subgroup analysis. Panel A shows the ROC curve of OMI AI model and sensitivity and specificity of STEMI criteria (green dot) and ECG experts (purple cross) on the holdout set. The AUC is 0.941 (n = 2,263 contacts [20.02% OMI]), Panel B shows the OMI AI model performance on different patient subgroups.
<table>
<thead>
<tr>
<th>Comparator</th>
<th>Ref -</th>
<th>Ref +</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1679</td>
<td>79</td>
<td>82.6%</td>
<td>92.8%</td>
<td>0.741</td>
<td>0.955</td>
</tr>
<tr>
<td></td>
<td>(78.9-86.1)</td>
<td></td>
<td></td>
<td>(91.5-93.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMI AI Model</td>
<td>131</td>
<td>374</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEMI Criteria</td>
<td>1766</td>
<td>297</td>
<td>34.4%</td>
<td>97.6%</td>
<td>0.780</td>
<td>0.856</td>
</tr>
<tr>
<td></td>
<td>(30.0-38.8)</td>
<td></td>
<td></td>
<td>(96.8-98.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>156</td>
<td></td>
<td></td>
<td>0.723</td>
<td>0.842</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.834</td>
<td>0.871</td>
</tr>
<tr>
<td>ECG Experts</td>
<td>1720</td>
<td>109</td>
<td>75.9%</td>
<td>95.0%</td>
<td>0.793</td>
<td>0.940</td>
</tr>
<tr>
<td></td>
<td>(71.9-80.0)</td>
<td></td>
<td></td>
<td>(94.0-96.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>344</td>
<td></td>
<td></td>
<td>0.753</td>
<td>0.929</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.832</td>
<td>0.951</td>
</tr>
</tbody>
</table>

Table 1. Head-to-head benchmark comparison in detecting the primary outcome definition of OMI.

Benchmark Comparison