Melanocortin 1 receptor deficiency protects against pathological cardiac hypertrophy

A. Suominen1, S. Ruohonen1, Z. Szabo2, E. Savontaus1, R. Kerkela3, P. Rinne1

1University of Turku, Turku, Finland
2University of Oulu, Pharmacology and toxicology, Oulu, Finland
3Medical Research Center Oulu, Oulu, Finland

Funding Acknowledgements: Type of funding sources: Public grant(s) – National budget only. Main funding source(s): The Academy of Finland, the Sigrid Jusélius Foundation

Background: The melanocortin system, including adrenocorticotropic hormone, melanocyte-stimulating hormones and five melanocortin receptors (MC-R), regulates important physiological functions such as pigmentation and energy homeostasis. It has been also recently implicated in the regulation of pathological cardiac remodeling but the role of different MC-R subtypes in the heart remain unknown.

Purpose: Based on the abundant cardiac expression of MC1-R, we hypothesized that it is functionally active in the heart and regulates pathological cardiac remodeling.

Methods: Rat H9c2 cells were used to study the effects of the selective MC1-R agonist LD211 on intracellular signaling cascades, gene expression and cellular growth response by using Western blotting, quantitative RT-PCR and 3H-leucine incorporation assay, respectively. Recessive yellow mice (Mc1re/e) were used as a model of global MC1-R deficiency. Inducible cardiomyocyte-specific MC1-R knockout mouse model (Mc1r-cKO) was engineered by intercrossing MC1-R floxed mice (Mc1rflox) with tamoxifen-inducible Myh6-MerCreMer transgenic mice (Myh6-MCM). Mc1re/e and Mc1r-cKO mice were subjected to transverse aortic constriction (TAC, 8 wks) or subcutaneous infusion of angiotensin II (Ang II, 4 wks) to induce pathological cardiac hypertrophy. Cardiac structure and function were measured by echocardiography and by histological examination of H&E-stained heart sections.

Results: Treatment of H9c2 cells with LD211 increased MAP-kinase p-38 phosphorylation (+53 %, P=0.005 vs control), upregulated the expression of B-type natriuretic peptide (Nppb, +40 %, P=0.03 vs control) and increased 3H-leucine incorporation (+27 %, P=0.006 vs control). Mc1re/e mice showed reduction in ventricular weight (-29 mg, P=0.03) compared to WT mice after TAC operation, and reduced left ventricular (LV) expression of atrial natriuretic peptide (Nppa) and fibrosis-related genes (Ctgf and Mmp2). In terms of LV systolic performance, TAC-operated Mc1re/e mice showed tendency towards improved LV ejection fraction (EF, +6 %, P=0.06) compared to WT mice. To further investigate whether the phenotype of Mc1re/e mice is driven by deficient MC1-R signaling in cardiomyocytes, we characterized Mc1r-cKO mice, which recapitulated the phenotypic features of Mc1re/e mice. Specifically, TAC-operated Mc1r-cKO mice displayed reduced ventricular weight (-38 mg, P=0.007) and downregulation of LV expression of Nppa and fibrosis-related genes compared to Myh6-MCM mice. Likewise, in a model of Ang II-induced cardiac hypertrophy, Mc1r-cKO mice showed reduced ventricular weight (-10 mg, P=0.015) compared to Myh6-MCM mice, indicating that the protection against pathological cardiac hypertrophy was model-independent.

Conclusion: Our studies demonstrate that MC1-R activation promotes cardiomyocyte growth in vitro, while global and cardiomyocyte-specific MC1-R deficiency protects against pathological cardiac hypertrophy induced by TAC or Ang II infusion.