Clinical impact of 18F-FDG-PET/CT in the extra cardiac work-up of patients with infective endocarditis

Ali Asmar¹*, Cengiz Özcan¹, Axel C.P. Diederichsen¹, Anders Thomassen², and Sabine Gill¹

¹Department of Cardiology, Odense University Hospital, Sdr Boulevard 29, 5000 Odense C, Denmark; and ²Department of Nuclear Medicine, Odense University Hospital, Sdr Boulevard 29, 5000 Odense C, Denmark

Received 3 January 2014; accepted after revision 6 March 2014; online publish-ahead-of-print 7 April 2014

Objective
The purpose of this study was to assess the clinical importance of 18F-FDG-PET/CT used in the extra cardiac work-up of patients with infective endocarditis (IE).

Background
IE is a serious condition with a significant mortality. Besides the degree of valvular involvement, the prognosis relies crucially on the presence of systemic infectious embolism.

Methods
Seventy-two patients (71% males and mean age 63 ± 17 years) with IE were evaluated with 18F-FDG-PET/CT in addition to standard work-up including patient history, physical examination, conventional imaging modalities, and weekly interdisciplinary conferences. When previous unknown lesions detected by 18F-FDG-PET/CT were confirmed by succeeding examinations, they were considered true positive new findings and were further assessed for their clinical importance.

Number needed to investigate was calculated as the number of patients who needed to undergo 18F-FDG-PET/CT to find at least one clinical important true positive new finding, not identified by standard work-up prior to 18F-FDG-PET/CT.

Results
18F-FDG-PET/CT detected 114 lesions and 64 were true positive, of which 25 were new findings and detected in 17 patients. In 11 patients, the lesions were considered to have a clinical importance; osteomyelitis ($n=7$), iliopsoas abscess ($n=1$), gastrointestinal lesions ($n=2$), and vascular prosthetic graft ($n=1$). Number needed to investigate was 7 (11 of 72 patients).

Conclusions
18F-FDG-PET/CT detected lesions of clinical importance in one of seven IE patients and may be a substantial imaging technique for tracing peripheral infectious embolism due to IE. Thus, 18F-FDG-PET/CT may help to guide adequate therapy and thereby improve the prognosis of patients with IE.

Keywords
18F-FDG-PET/CT • Clinical impact • Infective endocarditis • Extra cardiac work-up

Introduction
Infective endocarditis (IE) is a serious condition with a high mortality. The diagnosis of IE is established according to Dukes classification and modifications of these criteria suggested by European Society of Cardiology (ESC) and American Heart Association.¹ ² Besides the degree of valvular pathology, the prognosis relies crucially on the presence of systemic infectious embolism. Embolic events have been reported to occur in 22–43% of patients with IE, and this occurs most frequently during the first 2 weeks after antibiotic treatment is initiated.³ ⁴ The extra cardiac infectious manifestations in patients with IE may involve several organs and are often difficult to distinguish from IE itself due to similarity of symptoms. However, silent/non-symptomatic embolism occurs in almost 20% of patients with IE.⁵ The prognosis of IE patients with prosthetic valves has been shown to be even worse.⁶ ⁷

Patients with verified IE are routinely evaluated for the primary infectious origin and/or possible extra cardiac infectious manifestations. This process is tailored for each patient with IE and consists of clinical assessment, diagnostic microbiology, various imaging
techniques, and interdisciplinary conferences on a weekly basis. Early identification of these foci is very important for choosing the right type, dose, and duration of antibiotic treatment and indication for surgery.

The usefulness of 18F-FDG-PET/CT has proved its worth in a spectrum of malignant conditions due to its ability to depict cells with enhanced glucose metabolism. Besides, 18F-FDG-PET/CT has shown its potential in inflammation and infection. Several studies demonstrated the usefulness of 18F-FDG-PET/CT as a diagnostic tool in patients with fever with unknown origin. In a previous study, we assessed the value of 18F-FDG-PET/CT in the diagnostic work-up of extra cardiac infectious manifestations in patients with IE. We found an overall sensitivity of 40%. When mainly excluding organs with high physiological FDG uptake (central nervous system, heart, urinary tracts, and dental region) sensitivity increased to 87%. 18F-FDG-PET/CT was able to detect IE in 13 (18%) patients. Despite limited data, studies suggest 18F-FDG-PET/CT as an important diagnostic tool for tracing extra cardiac infectious manifestations in IE patients. However, the clinical impact is unknown. Thus, we found it relevant to address the significance of hitherto unknown systemic infectious embolism detected by 18F-FDG-PET/CT in the diagnostic work-up in patients with IE.

Methods

Study population

This retrospective, single-center study comprised 72 patients, previously described by Özcan et al., with definite IE according to Duke’s modified criteria. They were admitted to the Department of Cardiology, Odense University Hospital from January 2008 to December 2010 and underwent at least one 18F-FDG-PET/CT scan. 18F-FDG-PET/CT scans were booked at the discretion of the attending physician, when undetected infection was suspected. During the same time another 104 patients with IE were admitted to our department, without having an 18F-FDG-PET/CT scan performed. The patients’ condition varied from critically ill to less severe courses, treated surgically or conservatively. All the patients received treatment in accordance with the guidelines from the ESC. Two physicians (C.O. and A.A.) were responsible for gathering all relevant and pre-specified data from the medical records. Each case was discussed in the entire study group, and in cases with doubt about the clinical importance of a finding, final data were made up as a consensus decision.

18F-FDG-PET/CT

Examinations were conducted on dedicated 18F-FDG-PET/CT systems (GE Discovery VCT XT, GE Discovery RX or GE Discovery STE; GE Healthcare, Milwaukee, WI, USA). Patients were fasting 6 h (diabetes patients only 4 h) prior to injection and were given a weight adjusted dose of 4 MBq/kg (min. 200 MBq and max. 400 MBq) 18F-FDG 60 min prior to image acquisition. The duration of the PET scan was at least 2.5 min per bed position increasing to 3.5 min in extremely overweight patients. Different CT protocols were used according to the type of disease. Contrast-enhanced CT (iopromide 370 mg iodine/mL) was performed when pathological conditions were suspected in the abdomen or in the head/neck region, whereas non-contrast-enhanced CT was performed when pathological conditions were suspected in other regions. The standard field of view for the 18F-FDG-PET/CT imaging extended the base of the skull to the mid-thighs, unless it was specified differently. The analysis of the 18F-FDG-PET/CT imaging for infection and inflammation relied on a visual assessment of the distribution and intensity of the tracer. The 18F-FDG-PET imaging was interpreted by two nuclear medicine physicians, and the contrast-enhanced CT by a radiologist. A mutual conclusion was achieved.

18F-FDG-PET/CT vs. other modalities

Since no gold standard in the work-up of extra cardiac manifestations in IE exists, the result of each 18F-FDG-PET/CT scan was compared with the results of the clinical standard work-up according to ESC Guidelines for IE, which at the same time served as the gold standard. Depending on the clinical setting, the work-up included patient history, physical examination (including examination by a dentist), laboratory tests, ultrasound, X-ray, CT, MRI, nuclear imaging techniques, histopathological studies, microbiological cultures, endoscopies, and clinical assistance from other specialties. All patient courses were reviewed weekly at a conference with participants from the departments of cardiology, thoracic surgery, anaesthesiology, infectious diseases, and microbiology with the purpose of optimizing patient treatment, diagnostics, and to consider the indication for surgery.

For evaluating only the supplemental benefit of 18F-FDG-PET/CT in the evaluation of IE patients, only lesions not previously detected by other modalities were evaluated, regardless of localization. Evaluation was based on a per-lesion analysis, potentially resulting in more than one lesion in each patient. A lesion was considered a true positive new finding, if the finding was confirmed by subsequent other modalities. Any lesion detected by 18F-FDG-PET/CT was further evaluated for its clinical importance, and considered as a clinical important finding if resulting in any adjustment of the treatment course, whether medical or surgical.

Statistical analysis

Descriptive measures for continuous variables were presented as means ± SD or as median values and range. Depending on the descriptive variables, unpaired t-test and Fisher’s exact probability test were used for calculating the P-value (SigmaPlot 12, Systat Software, Inc., Chicago, IL, USA). Differences were considered statistically significant at values of P < 0.05.

Number needed to investigate was calculated by number of 18F-FDG-PET/CT with clinical importance divided by the total number of 18F-FDG-PET/CT performed.

Results

Patient characteristics

The mean age was 63 ± 17 years, the majority being males (71%). See Table 1 for baseline characteristics. Within 1 month from the onset of symptoms, 71% of patients were diagnosed with IE, and the 18F-FDG-PET/CT was conducted at a median of 6 days (range: 5 days before to 58 days after) after the diagnosis was established. Left-sided IE was seen in the majority of cases, and staphylococci (40%) and streptococci (30%) were the most frequent bacterial species (Table 2). Forty-four per cent of the patients were treated surgically. Valvular regurgitation/destruction was the main indication for surgery (91%). In-hospital mortality was 15%. In our study, no indication of valve surgery was made on the basis of the 18F-FDG-PET/CT findings. However, in one case with an abscess detected by 18F-FDG-PET/CT surgery was done. With a median follow-up of > 1 year (469 days, range; 25–1067 days), 6% had relapse, 3% reinfection, and long-term survival rate was 71%. Characteristics were similar between patients with and without findings at 18F-FDG-PET/CT (positive and negative scans, respectively).
Overall, 18F-FDG-PET/CT detected 114 lesions in 52 patients, and 64 of these lesions were considered true positive. Twenty-five of the lesions, detected in 17 patients, were new findings (unknown prior to 18F-FDG-PET/CT) and were confirmed by a median of 3 (range 1–8) different modalities. Of these 25 findings 11 had clinical importance (Figure 1). Thus, the number needed to investigate—to find a clinically important lesion, that would change therapy—was 7 (11 divided by 72).

Table 1 Baseline demographics in patients with definite infectious endocarditis

<table>
<thead>
<tr>
<th>Variable</th>
<th>18F-FDG-PET/CT all (n = 72)</th>
<th>18F-FDG-PET/CT positive (n = 52)</th>
<th>18F-FDG-PET/CT negative (n = 20)</th>
<th>P-value (positive vs. negative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>63 ± 17</td>
<td>64 ± 18</td>
<td>60 ± 13</td>
<td>0.40</td>
</tr>
<tr>
<td>Male</td>
<td>51 (71)</td>
<td>36 (70)</td>
<td>15 (75)</td>
<td>0.78</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>12 (17)</td>
<td>9 (17)</td>
<td>3 (15)</td>
<td>1.00</td>
</tr>
<tr>
<td>Hypertension</td>
<td>26 (36)</td>
<td>20 (38)</td>
<td>6 (30)</td>
<td>0.59</td>
</tr>
<tr>
<td>Presence or past tobacco use</td>
<td>42 (58)</td>
<td>34 (65)</td>
<td>8 (40)</td>
<td>0.06</td>
</tr>
<tr>
<td>Heart failure at admission</td>
<td>15 (22)</td>
<td>10 (19)</td>
<td>5 (25)</td>
<td>0.75</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presence or past tobacco use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart failure at admission</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presence or past tobacco use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart failure at admission</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are mean ± SD and n (number of subjects, %).

Table 2 Type of IE and microbiology

<table>
<thead>
<tr>
<th>Variable</th>
<th>18F-FDG-PET/CT all (n = 72)</th>
<th>18F-FDG-PET/CT positive (n = 52)</th>
<th>18F-FDG-PET/CT negative (n = 20)</th>
<th>P-value (positive vs. negative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE type (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native valve</td>
<td>52 (72)</td>
<td>31 (60)</td>
<td>14 (70)</td>
<td>0.59</td>
</tr>
<tr>
<td>Prosthetic valve</td>
<td>12 (16)</td>
<td>12 (23)</td>
<td>2 (10)</td>
<td>0.32</td>
</tr>
<tr>
<td>Pacemaker/ICD</td>
<td>2 (3)</td>
<td>1 (2)</td>
<td>1 (5)</td>
<td>0.48</td>
</tr>
<tr>
<td>Vegetation negative</td>
<td>3 (4)</td>
<td>3 (6)</td>
<td>0</td>
<td>0.55</td>
</tr>
<tr>
<td>VSD</td>
<td>1 (1)</td>
<td>1 (2)</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>Other</td>
<td>2 (3)</td>
<td>2 (4)</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>Microbiology (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>24 (33)</td>
<td>17 (33)</td>
<td>7 (35)</td>
<td>1.00</td>
</tr>
<tr>
<td>Coagulase-negative staphylococcus</td>
<td>5 (7)</td>
<td>5 (10)</td>
<td>0</td>
<td>0.31</td>
</tr>
<tr>
<td>Viridans group streptococci</td>
<td>9 (12)</td>
<td>6 (12)</td>
<td>3 (15)</td>
<td>0.70</td>
</tr>
<tr>
<td>Streptococcus bovis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>Other streptococci</td>
<td>13 (18)</td>
<td>10 (19)</td>
<td>3 (15)</td>
<td>1.00</td>
</tr>
<tr>
<td>Enterococcus species</td>
<td>12 (17)</td>
<td>8 (15)</td>
<td>4 (20)</td>
<td>0.72</td>
</tr>
<tr>
<td>HACEK</td>
<td>1 (1)</td>
<td>1 (2)</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>Other bacteria</td>
<td>4 (6)</td>
<td>2 (4)</td>
<td>2 (10)</td>
<td>0.31</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>1 (1)</td>
<td>1 (2)</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>Negative culture findings</td>
<td>4 (6)</td>
<td>3 (6)</td>
<td>1 (5)</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Data are n, number of subjects, %. VSD, ventricular septal defect. Other, combination of both native, prosthesis and lead IE. HACEK, Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, Kingella. Other bacteria, Gemella haemolysins, Abiotrophia defective, Coxiella burnetti, Granulicatella alacens.
Clinical important findings

In eight cases, 18F-FDG-PET/CT revealed a lesion suspicious for osteomyelitis (Figure 2). Seven were subsequently confirmed by MRI and one by bone scintigraphy. One of these patients was further diagnosed with an abscess located in the paravertebral muscle by 18F-FDG-PET/CT. This was confirmed by MRI and subsequently treated with surgical drainage (Figure 3). 18F-FDG-PET/CT identified one case with hitherto unknown gastrointestinal cancer and a case with acute cholecystitis, both being confirmed by endoscopic and ultrasonographic examinations. Finally, in one patient vascular graft infection, suggested by 18F-FDG-PET/CT, was verified by contrast-enhanced CT (Figure 4).

Findings without therapeutic consequences

The remaining six patients comprised pulmonary infections, polyp of the respiratory airway, unspecific gastrointestinal lesions, diverticulosis, and small liver as well as spleen abscesses, respectively. One patient had ultrasonographical signs of infection surrounding the long biceps tendon. None of these conditions had any influence on the ongoing treatment.

Discussion

In the present study, we assessed the clinical importance of previously unknown lesions, detected by 18F-FDG-PET/CT, in patients with definite IE. 18F-FDG-PET/CT identified 11 out of 72 patients, who had clinical important lesions not detected by conventional work-up, most frequently axial osteomyelitis.

The diagnosis of IE is a challenge, especially due to extra cardiac infectious manifestations even in patients without suspicion. These are severe complications, which may prolong and complicate the clinical course, thereby having impact on the therapeutic treatment of IE, in terms of choice of antibiotics, duration of treatment and optimal timing for surgical intervention.

The diagnostic role of 18F-FDG-PET/CT has been investigated extensively in cancers as well as in cardiac and neurological disorders. However, in the past decade increasing numbers of studies have shown promising results in management of patients with infection possibly because 18F-FDG-PET/CT has some
advantages compared with conventional nuclear imaging techniques like white blood cell scan; higher resolution and sensitivity together with detailed anatomic localization from the CT part of the examination. The latter, of course, is also possible in conventional nuclear imaging techniques with hybrid SPECT/CT scanners.

In our study, 18F-FDG-PET/CT revealed lesions suspicious for osteomyelitis in eight patients, which prolonged the antibiotic treatment in each patient according to the guidelines from the ESC. Seven episodes were subsequently confirmed by MRI and one by bone scintigraphy.

Bone scintigraphy has been utilized for years to evaluate patients with suspected osteomyelitis with a high sensitivity. Radiolabelled white blood cell scintigraphy is also used to detect osteomyelitis, as its specificity is higher than that of bone scintigraphy. However, treatment with antibiotics prior to radiolabelled white blood cell scintigraphy reduced sensitivity due to poor migration of the leucocytes. In addition, the sensitivity of radiolabelled white blood cell scintigraphy in the evaluation of chronic osteomyelitis in the axial skeleton is only 21% due to the poor contrast between the sites of infection and the surrounding red bone marrow. In our study, all episodes of osteomyelitis were located in the axial skeletons, although the 18F-FDG-PET/CT was conducted after antibiotic treatment had been initiated.

18F-FDG-PET/CT has shown to be highly sensitive for detecting chronic osteomyelitis, even in patients who have been treated with antibiotics prior to imaging, with a higher sensitivity and specificity compared with bone scintigraphy, radiolabelled white blood cell scintigraphy or MRI. Further, it has been observed that FDG activity returned to normal after successful treatment of chronic osteomyelitis, whereas persistent abnormalities were seen with MRI. This might be a relevant issue to distinguish between ongoing and past osteomyelitis prior to possible valve surgery to prevent relapse.

In one patient 18F-FDG-PET/CT suggested vascular graft infection (Figure 4) and was verified by contrast-enhanced CT. The precise anatomic localization by 18F-FDG-PET/CT enables accurate differentiation between graft and soft tissue infection. A subsequent contrast-enhanced computed tomography confirmed the air inside the aortic wall, suggestive of infection (blue arrows). Abbreviations as in Figure 2.

Figure 4: Vascular graft infection, the patient had an aortic valve endocarditis. By 18F-FDG-PET/CT, an increased FDG uptake was seen focally in the abdominal aorta and there was suspicion of air in the aortic wall, which was difficult to evaluate by non-contrast-enhanced computed tomography. A subsequent contrast-enhanced computed tomography confirmed the air inside the aortic wall, suggestive of infection (blue arrows). Abbreviations as in Figure 2.
organs with a high physiological uptake need supplementary diagnostic modalities other than solely 18F-FDG-PET/CT. Nevertheless, apart from detecting IE, 18F-FDG-PET/CT’s negative predictive value is considered high.11

Finally, what would be the optimal timing to assess extra cardiac infectious foci in patients with IE? In the present study, 18F-FDG-PET/CT was conducted at a median of 6 days (range; 5 days before to 58 days after) after the diagnosis was established. Thus, a certain number of 18F-FDG-PET/CT scans were conducted relatively late from the onset of antibiotic treatment. Whether this has a clinical importance remains unclear. Embolic events occur most frequently during the first 2 weeks after antibiotic treatment is initiated.3,4 However, we demonstrated earlier that the sensitivity of 18F-FDG-PET/CT in the diagnostic work-up of extra cardiac infectious foci increased from 79% when conducted early (\(<6\) days from diagnosis of IE) to 91% when conducted late (\(>6\) days from diagnosis of IE).11 Nevertheless, the optimal timing for performing 18F-FDG-PET/CT should be determined in future studies.

In our study, 11 patients had a significant clinical impact of the 18F-FDG-PET/CT scan, which we interpreted as a number needed to investigate \(\sim 7\). To our knowledge, only one prospective study exists primarily assessing the diagnostic role of 18F-FDG-PET/CT for early extra cardiac infectious manifestations.13 In this study, 24 patients underwent an 18F-FDG-PET/CT within 2 weeks after the diagnosis of IE. In 28% of patients, extra cardiac manifestations were detected early giving therapeutic impact. Our findings are in accordance with the findings in this study.

Limitations

The present study was conducted retrospectively, resulting in methodological difficulties concerning the comparison of 18F-FDG-PET/CT results with the standard work-up. Since infection is a dynamic process, a head-to-head comparison between 18F-FDG-PET/CT and other imaging modalities is more likely to resemble daily clinical practice. Further, the retrospective nature and referral of patients with IE to an 18F-FDG-PET/CT scan by physician’s clinical suspicion is not an optimal setting to study the true frequency of significant extra cardiac and needs a prospective assessment. However, due to the retrospective nature of the present study a significant follow-up was allowed.

The reference standard in the present study was other imaging modalities, e.g. X-ray, ultrasound which were obviously inferior to a whole-body 18F-FDG-PET/CT. Potentially, this may underestimate the number of clinical important findings revealed in the present study. Further, we were not able to distinguish, whether any lesion detected by 18F-FDG-PET/CT was to be considered as a primary source of IE or being a secondary infectious embolism. Though, the clinical consequences of this differentiation seem of minor importance only, as both types of infection need to be treated.

Finally, the number of patients in our study is limited. Though, this is the largest study published so far concerning the same issue, larger studies are needed to confirm our results.

Conclusion

In 11 of 72 patients, 18F-FDG-PET/CT detected extra cardiac lesions with significant clinical importance, not detected by the standard work-up. Thus, the number needed to investigate was 7. Prospective studies evaluating the role of 18F-FDG-PET/CT in the clinical management of patients with IE are needed. However, at present we suggest that 18F-FDG-PET/CT should be performed without significant time delay from the day of definite diagnosis together with other relevant diagnostic modalities.

Acknowledgements

The authors thank M.D. Peter Andersen, Department of Radiology, Odense University Hospital, Denmark, for kindly providing contrast-enhanced CT and MRI images.

Conflict of interest: none declared.

References

Brain draining severe tricuspid regurgitation

Satyendra Tewari, Srivatsa Nadig, and Aditya Kapoor*

Department of Cardiology, Sanjay Gandhi PGIMS, Lucknow 226014, India
* Corresponding author. Tel: +91 522 2494220/+91 9839088893; Fax: +91 522 2668073, Email: akapoor65@gmail.com

An adult male with breathlessness and audible tricuspid regurgitation (TR) had right atrial (RA) enlargement on chest X-ray (Panel A). Transthoracic echocardiography with 3D reconstruction revealed dilated RA, severe TR, normal right ventricular function, and a mobile tubular structure in the RA seemingly traversing the superior vena cava (SVC; Panel B and see Supplementary data online, Videos S1 and S2). The mobile tubular structure was confirmed on transoesophageal echocardiography, traversing from the SVC to the RA (see Supplementary data online, Video S3 and Panel C); thrombus or spontaneous echo contrast was absent.

Although the patient denied any previous cardiac intervention, a scar mark was visible in the neck (Panel D). He volunteered a history of ventriculo-atrial shunt 20 years ago for obstructive hydrocephalus. The intracardiac shunt catheter had caused functional TR secondary to malcoaptation, reminiscent of pacing lead-induced TR. In most such cases, TR is usually mild to moderate and severe TR is quite rare; moreover, malcoaptation as the sole mechanism of severe TR is rather unusual.

A ventriculo-atrial shunt meant for decompressing hydrocephalus (prompting the term ‘brain drain’) leading to severe TR is as yet an unreported entity. The patient improved following initiation of diuretics. Careful clinical examination and detailed transthoracic (with 3D reconstruction) and transoesophageal echocardiography were helpful in making the diagnosis in this unusual case.

Supplementary data are available at European Heart Journal – Cardiovascular Imaging online.

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.