Association between the metabolic syndrome and parental history of premature cardiovascular disease

The recent study by Dallongeville et al. on 390 men and 281 women with the metabolic syndrome (MS) according to the NCEP III criteria clearly showed that parental premature cardiovascular disease was associated with their offspring’s MS, particularly in women. Herewith we present additional data in proof.

In a study of 55 persons with premature coronary heart disease (i.e. documented myocardial infarction before their age of 45; 39.9 ± 4.2 years), we have compared their 97 offspring with a random sample of 139 school children of the same age (14.2 ± 0.6 years), all from Split, Croatia. Similar to the results of Dallongeville et al., we have observed significant differences in terms of MS and other cardiovascular risk factors between these ‘risky’ children and their controls, as shown in the table.

Unfortunately, we did not take their waist circumference or waist-to-hip ratio and we did not measure their triglycerides or HDL cholesterol. However, the observed differences became even more striking when out of these 97 ‘stigmatized’ children were assessed those 50 with at least one additional cardiovascular risk factor. For instance, arterial hypertension was present in 46.2% and smoking in 51.3% of such children.

The detected tracking and clustering phenomena underscore the association of MS and other contributors to familial aggregation of propensity to cardiovascular disease, stressing the importance of early detection for timely intervention, consisting mostly of dietary modifications and other life-style measures. It is not yet clear which proportion of the MS components is hereditary and which is environmentally and/or microsocially induced. The just launched, multinational INTER-HEART 2 study attempts to answer these questions.

References

<table>
<thead>
<tr>
<th></th>
<th>Control children (n = 139)</th>
<th>Premature AMI offspring (n = 97)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative weight (%)*</td>
<td>99.5 ± 11.2</td>
<td>103.8 ± 15.2**</td>
</tr>
<tr>
<td>Plasma cholesterol (mmol/L)</td>
<td>4.4 ± 0.6</td>
<td>5.2 ± 1.1**</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>114.3 ± 8.5</td>
<td>116.6 ± 15.3**</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>73.6 ± 7.3</td>
<td>74.3 ± 12.7**</td>
</tr>
</tbody>
</table>

*Body mass in kilogram as per cent of ideal age/sex weight.

**P < 0.05 (two-tailed, unpaired t-test).

Mirjana Rumboldt
Split University School of Medicine
Soltanska 2
21000 Split
Croatia

Zvonko Rumboldt
Split University School of Medicine
Soltanska 2
21000 Split
Croatia

E-mail address: zr@mefst.hr

Serafina Pesenti
Split University School of Medicine
Soltanska 2
21000 Split
Croatia

© The European Society of Cardiology 2006. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org
therapies such as LESs should probably be avoided.

References

Incidence of syncope after ICD implantation: low or high?: reply

We appreciate the comments and interest of Garcia Moran and Mont in our work. We agree with them that our results were obtained from a selected implantable cardioverter-defibrillator (ICD) recipient population with syncopal spontaneous ventricular tachycardia (VT) and, therefore, they should not be extrapolated to the general population of patients who presented syncope before ICD implantation.1,4 Syncope can originate from many different mechanisms, which can be related or not to VT. This was discussed in our original manuscript and was also admitted in the report of Garcia Moran et al.2 who suggested that some patients with non-arrhythmic syncope were enrolled in their study because none of the syncopal recurrences had an arrhythmic mechanism following ICD implantation. Indeed, their population appears substantially different from ours, because none of their 38 patients presented with spontaneous monomorphic VT before ICD implantation and this was induced by programmed electrical stimulation in only 31 patients.2

Garcia Moran and Mont speculated that the high incidence of syncopal recurrence which was found in our patients was related to the use of low-energy shocks (LESs) because very LESs (<2 J) have been found to be prorarrhythmic at ICD implantation.3 They also speculated that programming high energy shocks (HESs) in the VT zone may increase the final time to arrhythmia termination. However, VT degeneration into VF by HES presented also in three out of seven syncopal recurrences in our patients.1 In addition, despite similar antitachycardia pacing and LES programming, only a single syncopal episode occurred at follow-up in our group of 50 patients presenting with non-syncopal VT before ICD implantation.1 This latter finding matches the low syncope occurrence that Garcia Moran et al.1 found by programming up to 16 antitachycardia pacing sequences which were followed by LES (‘low energy cardioversion was attempted by successive shocks of progressively increasing energy’). Therefore, any statement that is not supported by a controlled trial comparing LES and HES should be considered just a speculation.

We disagree with Garcia Moran and Mont about the existence of a controversy about the recurrence of syncope in ICD recipients, since a controversy exists when conflicting data from different sources are available. However, this is not the case for syncope because most reports1,4 establish its recurrence ~15% in the general population of ICD recipients presenting with syncope before implantation and ~30% in the only one report1 studying the subpopulation of patients with syncopal VT before implantation.

In conclusion, syncope at spontaneous VT presentation identifies a subset of patients with high risk of syncope following ICD implantation, despite similar left ventricular ejection fraction, tachycardia cycle length, and device programming that patients presenting with no syncope at VT documentation. This risk cannot be extrapolated to other ICD populations.

References
2. Garcia Moran E, Mont L, Cuesta A, Matas M, Brugada J. Low recurrence of syncope in patients with inducible sustained ventricular tachycardia (VT) and, therefore, they should not be extrapolated to the general population of patients who presented syncope before ICD implantation.1,4 Syncope can originate from many different mechanisms, which can be related or not to VT. This was discussed in our original manuscript and was also admitted in the report of García Moran et al.2 who suggested that some patients with non-arrhythmic syncope were enrolled in their study because none of the syncopal recurrences had an arrhythmic mechanism following ICD implantation. Indeed, their population appears substantially different from ours, because none of their 38 patients presented with spontaneous monomorphic VT before ICD implantation and this was induced by programmed electrical stimulation in only 31 patients.2

2. Garcia Moran E, Mont L, Cuesta A, Matas M, Brugada J. Low recurrence of syncope in patients with inducible sustained ventricular tachycardia (VT) and, therefore, they should not be extrapolated to the general population of patients who presented syncope before ICD implantation.1,4 Syncope can originate from many different mechanisms, which can be related or not to VT. This was discussed in our original manuscript and was also admitted in the report of García Moran et al.2 who suggested that some patients with non-arrhythmic syncope were enrolled in their study because none of the syncopal recurrences had an arrhythmic mechanism following ICD implantation. Indeed, their population appears substantially different from ours, because none of their 38 patients presented with spontaneous monomorphic VT before ICD implantation and this was induced by programmed electrical stimulation in only 31 patients.2

Garcia Moran and Mont speculated that the high incidence of syncopal recurrence which was found in our patients was related to the use of low-energy shocks (LESs) because very LESs (<2 J) have been found to be prorarrhythmic at ICD implantation.3 They also speculated that programming high energy shocks (HESs) in the VT zone may increase the final time to arrhythmia termination. However, VT degeneration into VF by HES presented also in three out of seven syncopal recurrences in our patients.1 In addition, despite similar antitachycardia pacing and LES programming, only a single syncopal episode occurred at follow-up in our group of 50 patients presenting with non-syncopal VT before ICD implantation.1 This latter finding matches the low syncope occurrence that García Moran et al.1 found by programming up to 16 antitachycardia pacing sequences which were followed by LES (‘low energy cardioversion was attempted by successive shocks of progressively increasing energy’). Therefore, any statement that is not supported by a controlled trial comparing LES and HES should be considered just a speculation.

We disagree with García Moran and Mont about the existence of a controversy about the recurrence of syncope in ICD recipients, since a controversy exists when conflicting data from different sources are available. However, this is not the case for syncope because most reports1,4 establish its recurrence ~15% in the general population of ICD recipients presenting with syncope before implantation and ~30% in the only one report1 studying the subpopulation of patients with syncopal VT before implantation.

In conclusion, syncope at spontaneous VT presentation identifies a subset of patients with high risk of syncope following ICD implantation, despite similar left ventricular ejection fraction, tachycardia cycle length, and device programming that patients presenting with no syncope at VT documentation. This risk cannot be extrapolated to other ICD populations.

References