angiography. Small sample size of the coronary angiography group (n = 9) in the present report might be the cause of this insignificance.

References

Ali Yildiz
Department of Cardiology
Harrran University School of Medicine
Sanliurfa
Turkey
Tel: +90 505 327 42 65
Fax: +90 414 315 11 81
E-mail address: ghcaiyildiz@yahoo.com

Sema Yildiz
Department of Radiology
Harrran University School of Medicine
Sanliurfa
Turkey

Recep Demirbag
Department of Cardiology
Harrran University School of Medicine
Sanliurfa
Turkey

Remzi Yilmaz
Department of Cardiology
Harrran University School of Medicine
Sanliurfa
Turkey

Mustafa Gur
Department of Cardiology
Harrran University School of Medicine
Sanliurfa
Turkey

doi:10.1093/eurheartj/ehm387
Online publish-ahead-of-print 13 September 2007

Acute chromosomal DNA damage after radiation exposure: reply

We are grateful to Dr Yildiz and colleagues for their interest in our article. Their letter offers a unique opportunity to clarify several important points. First of all, it is important to focus on the physical dose–biodosimetric data correlation. In the original version of the manuscript, we indeed presented the data on the (lack of) correlation between Dose-Area Product and increase in micronuclei, but we were gently forced to delete them in the Revision process. As Reviewer 1 put it, 'no correlation between the radiation and the change in MN can be found due to the restricted sample size', and therefore 'the issue should not be mentioned in any part of the manuscript'. And he was probably right! For any given dose, the amount of damage is modulated by several other factors: reactive oxygen species after coronary revascularization and levels of myocardial damage (as Dr Yildiz et al. nicely pointed out); amount of contrast (which sensitizes lymphocytes to radiation damage); environmental mutagens (such a smoking); and perhaps most importantly, polymorphism of genes involved in DNA damage and repair. That is why all the literature describes a weak, if any, correlation between physical dose and biodosimetric damage in the low dose range of acute and chronic exposures. We also agree that the increase of frequency of micronuclei in circulating lymphocytes would have been significant after coronary angiography with a larger sample size. But above and beyond these important statistical aspects, the challenge ahead is to identify the determinants of damage, eventually translating an estimate of population risk into an individually tailored radio-risk profile through biodosimetry. One might ask: Why to discuss these biodosimetric issues in a top cardiology journal? Cardiologists prescribe and/or practice >50% of all medical imaging examinations, accounting for about two-third of the total effective dose, which in US totals the dose equivalent of 160 chest x-rays per head per year to the average citizen. In April 2007, the American College of Radiology released the landmark 'White Paper on Radiation Dose in Medicine', concluding that the expanding use of imaging modalities may result in an increased incidence of radiation-induced cancer in the not-too-distant future. Cardiology is the epicentre of the radiological tsunami of the last 20 years, and the current cardiological practice is based on a deregulated, radiation-insensitive, and imaging prescription. Biodosimetry may help the scientist to ‘see’, directly on their patients, the radiation damage through biomarkers of somatic DNA damage, which are intermediate endpoint of carcinogenesis and long-term predictors of cancer. Eventually, this will help the cardiologist to include the long-term risk in the risk-benefit balance, quintessential to determining the appropriateness of a diagnostic and therapeutic procedure, especially considering that more than one third of testing—even without considering radiation risk—are inappropriate in modern cardiology. It’s not radioprotection, it’s cardiology!

References

Maria Grazia Andreassi
CNR Institute of Clinical Physiology
Pisa
Italy
E-mail address: andreas@ifc.cnr.it

Eugenio Picano
CNR Institute of Clinical Physiology
Pisa
Italy
doi:10.1093/eurheartj/ehm388
Online publish-ahead-of-print 7 September 2007

Albuminuria and heart failure: is it an albuminuria or the hypertension?

Ingelsson et al elegantly emphasized albuminuria as a risk factor for heart failure in elderly hypertensive men and present thought-provoking speculative mechanisms. However, the association between albuminuria and heart failure was seen in untreated hypertensive men compared to treated hypertension, suggesting that treated hypertensive men had advanced hypertension and thereby hypertensive heart disease with natural progression to heart failure, and therapy likely attenuated both the progression of albuminuria and heart failure. In the 40 untreated hypertensive men who developed heart
failure during follow-up, the risk of heart failure was higher in those with higher degree of albumin excretion rate (AER). Authors presented analysis of various subgroups but I could not find a similar analysis in relation to the degree of hypertension. Urinary AER has been shown to be positively correlated with the degree of blood pressure.

Hypertension per se is an important cause of heart failure. In this subgroup of untreated hypertensives, men with higher elevations of BP were at increased risk for both AER and heart failure. As the authors state that it is unlikely that a very small concentration of albumin in urine in itself is the cause of increased risk for heart failure. I agree with the conclusion that low-grade albuminuria is a marker for subclinical cardiovascular damage but cannot affirm from this study that it predisposes to future heart failure.

References

Table 1 The association of urinary albumin excretion rate to heart failure incidence in participants without anti-hypertensive medication (n = 726)

<table>
<thead>
<tr>
<th></th>
<th>Adjusted for hypertension (categorical) or systolic and diastolic blood pressure (continuous)</th>
<th>Adjusted for established risk factors for heart failure</th>
<th>Adjusted for established risk factors, C-reactive protein, clamp glucose disposal rate, Nt-proBNP, and cystatin C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model with hypertension (categorical)</td>
<td>Hazard ratio for 1 SD increase in log UAER (95% CI)</td>
<td>P-value</td>
<td>Hazard ratio for 1 SD increase in log UAER (95% CI)</td>
</tr>
<tr>
<td>Model with systolic and diastolic blood pressure (continuous)</td>
<td>1.61 (1.30–2.00)</td>
<td><0.001</td>
<td>1.56 (1.21–2.03)</td>
</tr>
</tbody>
</table>

UAER, urinary albumin excretion rate; SD, standard deviation; CI, confidence intervals; Nt-proBNP, N-terminal pro brain natriuretic peptide. Established risk factors for heart failure: Acute myocardial infarction before baseline, acute myocardial infarction during follow-up (modelled as a time-dependent covariate), diabetes, left ventricular hypertrophy, smoking, body mass index, and glomerular filtration rate estimated from creatinine.

Erik Ingelsson
Department of Public Health and Caring Sciences/ Geriatrics
Uppsala University
Uppsala Science Park 751 85 Uppsala Sweden

Johan Arnlöv
Department of Public Health and Caring Sciences/ Geriatrics
Uppsala University
Uppsala Science Park 751 85 Uppsala Sweden

E-mail address: johan.arnlov@pubcare.uu.se

Malvinder S. Parmar
Associate Professor
Clinical Sciences Division
Northern Ontario Medical School
Lakehead and Laurentian Universities, and Timmins and District Hospital
640 Ross Ave. East Suite E
Timmins Ontario
Canada P4 N 8P2
Tel: +1 705 268 8066
Fax: +1 705 268 8066
E-mail address: atbeat@ntl.sympatico.ca

Letters to the Editor

doi:10.1093/eurheartj/ehm389

Online publish-ahead-of-print 7 September 2007

Albuminuria and heart failure: is it an albuminuria or the hypertension?: reply

We are grateful to Dr Parmar for raising this important issue. Dr Parmar appears to be under the impression that our study sample consisted of elderly men with hypertension. It is important to clarify that a wide range of blood pressure levels were represented in the participants without anti-hypertensive treatment in our community-based sample of elderly men (n = 726). In these participants, the mean systolic blood pressure was 144 mmHg (range 102–207 mmHg), the mean diastolic blood pressure was 82 mmHg (range 57–111 mmHg), and 61% were defined as hypertensives (systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 mmHg).

More importantly, Dr Parmar hypothesizes that higher urinary albumin excretion rate (UAER) may merely be a surrogate marker for poor blood pressure control rather than an independent risk factor for heart failure incidence. That hypothesis, however, is not supported by our data.

In all multivariable models, the association of UAER to heart failure incidence was independent of hypertension prevalence at baseline. Nonetheless, it is possible that some of the predictive information of the blood pressure variables could be lost due to the categorization of participants into hypertensives/non-hypertensives. In order to investigate whether the actual blood pressure levels rather than the hypertension diagnosis could explain the association between UAER and heart failure incidence, we replaced the hypertension variable in our multivariable models with systolic blood pressure and diastolic blood pressure (modelled as continuous variables). As seen in Table 1, the results remained essentially identical. Thus, in contrast to Dr Parmar’s hypothesis, the association between UAER and heart failure incidence in our study does not appear mediated by baseline blood pressure levels.