In a recent article, Buettner et al. proposed that obesity is associated with improved outcome in coronary artery disease patients after early revascularization because of UA/NSTEMI over a mean follow-up time of 17 months. The data presented in the first figure suggest that severity of obesity is inversely related to cumulative 3-year cardiovascular mortality. Although one would wish that—in addition to its known deleterious metabolic effects and the accelerated development of atherosclerosis—obesity may have cardiovascular benefits, the data and conclusions presented by Buettner et al. should be interpreted with great caution. Comparing the baseline data of patients with prior myocardial infarction, poor systolic left ventricular function, and extensive atherosclerotic coronary artery disease.4 Similarly, weight loss and/or exercise are known to improve cardiovascular function and mortality.5 In view of the known deleterious effects of obesity and its associated conditions hypertension, insulin resistance, diabetes, and dyslipidaemia and given that its prevalence goes much under-diagnosed in European countries, it appears daring to propose a beneficial effect of obesity according to the conclusions of Buettner et al. We also believe that early recognition and prevention of obesity, particularly in young patients, remain an important therapeutic goal in cardiovascular medicine, which appears to be underachieved at present.

References
5. Bramlage P, Wittchen HU, Pittrow D, Kirch W, Zieske AW, Malcom GT, Tracy RE, Strong JP. Obesity is associated with a 50% reduction in mortality.1 In their letter, Drs Barton and Husmann focus very much on baseline characteristics in the very obese patients. Obviously, the subgroup of very obese patients in our cohort is too small to allow meaningful statistical analysis or definite conclusions. Because of a more linear correlation between body mass index (BMI) and mortality in our cohort when compared with a U-shaped correlation in other studies, comparison of all obese patients vs. normal BMI patients seemed to be justified in our analysis.1,2

We fully agree with Drs Barton and Husmann that findings from observational studies like ours should be interpreted with caution. In addition, it is important to emphasize that observational studies document associations and are hypotheses generating, but can hardly ever prove causality. However, we disagree with some other points. (i) It was the primary aim of our study to compare the outcome of obese and normal weight patients. Even after adjustment for all possible confounders in the multivariable analysis, obesity was associated with a 50% reduction in mortality.1 In their letter, Drs Barton and Husmann focus very much on baseline characteristics in the very obese patients. Obviously, the subgroup of very obese patients in our cohort is too small to allow meaningful statistical analysis or definite conclusions. Because of a more linear correlation between body mass index (BMI) and mortality in our cohort when compared with a U-shaped correlation in other studies, comparison of all obese patients vs. normal BMI patients seemed to be justified in our analysis.1,2

We fully agree with Drs Barton and Husmann that findings from observational studies like ours should be interpreted with caution. In addition, it is important to emphasize that observational studies document associations and are hypotheses generating, but can hardly ever prove causality. However, we disagree with some other points. (i) It was the primary aim of our study to compare the outcome of obese and normal weight patients. Even after adjustment for all possible confounders in the multivariable analysis, obesity was associated with a 50% reduction in mortality.1 In their letter, Drs Barton and Husmann focus very much on baseline characteristics in the very obese patients. Obviously, the subgroup of very obese patients in our cohort is too small to allow meaningful statistical analysis or definite conclusions. Because of a more linear correlation between body mass index (BMI) and mortality in our cohort when compared with a U-shaped correlation in other studies, comparison of all obese patients vs. normal BMI patients seemed to be justified in our analysis.1,2

We fully agree with Drs Barton and Husmann that findings from observational studies like ours should be interpreted with caution. In addition, it is important to emphasize that observational studies document associations and are hypotheses generating, but can hardly ever prove causality. However, we disagree with some other points. (i) It was the primary aim of our study to compare the outcome of obese and normal weight patients. Even after adjustment for all possible confounders in the multivariable analysis, obesity was associated with a 50% reduction in mortality.1 In their letter, Drs Barton and Husmann focus very much on baseline characteristics in the very obese patients. Obviously, the subgroup of very obese patients in our cohort is too small to allow meaningful statistical analysis or definite conclusions. Because of a more linear correlation between body mass index (BMI) and mortality in our cohort when compared with a U-shaped correlation in other studies, comparison of all obese patients vs. normal BMI patients seemed to be justified in our analysis.1,2

We fully agree with Drs Barton and Husmann that findings from observational studies like ours should be interpreted with caution. In addition, it is important to emphasize that observational studies document associations and are hypotheses generating, but can hardly ever prove causality. However, we disagree with some other points. (i) It was the primary aim of our study to compare the outcome of obese and normal weight patients. Even after adjustment for all possible confounders in the multivariable analysis, obesity was associated with a 50% reduction in mortality.1 In their letter, Drs Barton and Husmann focus very much on baseline characteristics in the very obese patients. Obviously, the subgroup of very obese patients in our cohort is too small to allow meaningful statistical analysis or definite conclusions. Because of a more linear correlation between body mass index (BMI) and mortality in our cohort when compared with a U-shaped correlation in other studies, comparison of all obese patients vs. normal BMI patients seemed to be justified in our analysis.1,2

We fully agree with Drs Barton and Husmann that findings from observational studies like ours should be interpreted with caution. In addition, it is important to emphasize that observational studies document associations and are hypotheses generating, but can hardly ever prove causality. However, we disagree with some other points. (i) It was the primary aim of our study to compare the outcome of obese and normal weight patients. Even after adjustment for all possible confounders in the multivariable analysis, obesity was associated with a 50% reduction in mortality.1 In their letter, Drs Barton and Husmann focus very much on baseline characteristics in the very obese patients. Obviously, the subgroup of very obese patients in our cohort is too small to allow meaningful statistical analysis or definite conclusions. Because of a more linear correlation between body mass index (BMI) and mortality in our cohort when compared with a U-shaped correlation in other studies, comparison of all obese patients vs. normal BMI patients seemed to be justified in our analysis.1,2

Matthias Barton
Department of Internal Medicine
University Hospital Zurich
Rämistrasse 100
8091 Zurich
Switzerland
Tel: +41 44 255 5663
Fax: +41 44 255 5847
E-mail address: barton@usz.ch

Marc J. Husmann
Cardiovascular Department
Division of Angiology
University Hospital Berne
Berne 3010
Switzerland

University Hospital Berne
Berne 3010
Switzerland

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2007.
For permissions, please e-mail: journals.permissions@oxfordjournals.org