complicated myocardial infarction: relation to cardiac magnetic
resonance imaging measures of left ventricular structure and func-
7. Tayebjee MH, Lip GYH, MacFadyen RJ. Matrix metalloproteinases
in coronary artery disease: clinical and therapeutic implications and
8. Pedersen F, Raymond I, Kistorp C, Sandgaard N, Jacobsen P,
Hildebrandt P. N-terminal pro-brain natriuretic peptide in arterial
hypertension: a valuable prognostic marker of cardiovascular
9. Tayebjee MH, Nadar SK, MacFadyen RJ, Lip GY. Tissue inhibitor of
metalloproteinase-1 and matrix metalloproteinase-9 levels in
patients with hypertension: relationship to tissue Doppler
10. Cesari M, Penninx BW, Newman AB, Kritchevsky SB, Nicklas BJ,
Sutton-Tyrrell K, Rubin SM, Ding J, Simonick EM, Harris TB,
Pahor M. Inflammatory markers and onset of cardiovascular
events: results from the Health ABC study. Circulation 2003;108:
2317–2322.
11. Chuen MJNK, MacFadyen RJ. Sources of variance in blood bio-
marker measurement relevant to their use in describing the physi-
Jørgensen E, Marco J, Nordrehaug JE, Ruzyllo W, Urban P,
Stone GI, Wijns W; Task Force for Percutaneous Coronary
Interventions of the European Society of Cardiology. Guidelines
for percutaneous coronary interventions. The Task Force for Per-
cutaneous Coronary Interventions of the European Society of
13. MacFadyen RJ. Intraindividual temporal variance of biomarkers and
the definition of individualized prognosis in cardiovascular patients.
14. Wang L. Fundamentals of intrathoracic impedance monitoring in
heart failure. Am J Cardiol 2007;99:3G–10G.

A dangerous bridge: myocardial infarction due to myocardial bridging
in left ventricular hypertrophy

Hendrik Bonnemeier* and Melanie Barantke

Medizinische Klinik II, Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

*Corresponding author. Tel: +49 451 500 2421, Fax: +49 451 500 2363, Email: bonnemei@medinf.mu-luebeck.de

A 63-year-old woman with a history of hypertension presented to the coronary
care unit with a subacute anterior wall myocardial infarction (MI). She reported
of initial left-sided chest pain, dyspnoea, and weakness 18 h before hospital
admission, during a long-distance ride in a rental car without air condition on
a hot midsummer day after a minor car crash. The initial electrocardiogram
(Panel C) revealed normal sinus rhythm, left axis deviation, left anterior hemi-
block, inversion of the terminal T-waves in the anterosapical leads, ST-segment-depression in I, aVL, V5–V6, ST-segment-elevation in III and aVR,
and obvious signs of marked left ventricular hypertrophy. Serum chemistry
revealed elevated levels of cardiac troponin T (1.02 m/L), creatine kinase
(938 U/L), and lactate dehydrogenase (348 U/L), also suggestive for a subacute
MI. In view of these diagnostic findings, the patient was referred for emergency
cardiac catheterization, after receiving aspirin, heparin, a loading-dose of clopido-
grel, and a beta-blocker.

Left ventricular angiography demonstrated a moderately depressed left ventri-
cular systolic function with akinesis of the anterolateral and apical anterior wall
(Panel A and B). The left ventricular end-diastolic pressure was mildly increased
(18–20 mmHg). Coronary angiography exhibited ‘corkscrew appearance’ of all
coronary arteries without significant atherosclerosis. Furthermore, myocardial
bridging in the distal segment of the left anterior descending (LAD) artery
with total systolic compression and almost complete resolution in the diastole
was present (Panels A and B). There was normal antegrade flow (TIMI III) in
the LAD distal to the bridging segment without evidence of thrombus. Because of the primarily benign prognosis of myocardial bridging, we
decided upon a conservative treatment. The patient was discharged after an uncomplicated hospital course with a medication comprising a beta-
blocker, a calcium antagonist, an ACE-inhibitor, and aspirin.

The present case illustrates that MI may be a specific complication of myocardial bridging. Particularly, the presence of left ventricular hypertrophy,
additional catecholaminergic triggers, and/or increased thrombocyte activation, may contribute to the genesis of ischaemia in this predominantly angio-
graphic diagnosis of a congenital coronary abnormality.

Panel A. End-diastolic left ventricular angiogram and angiogram of the left coronary artery in RAO 45° and LAO 90°.
Panel B. End-systolic left ventricular angiogram and angiogram of the left coronary artery in RAO 45° and LAO 90°. Compression of the distal LAD with total disappearance (arrows) in the systole.
Panel C. 12-channel-surface-ECG on admission, exhibiting a suacute anterior MI in the presence of left ventricular hypertrophy.

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2007. For permissions please email: journals.permissions@oxfordjournals.org.