Normal systolic function in hypertrophic cardiomyopathy: reality or myth?: reply

We would like to thank Efthimiadis et al. for their interest in our work. Indeed, it was long believed that patients with hypertrophic cardiomyopathy (HCM) had normal or supranormal systolic function despite mutations in genes encoding for sarcomeric proteins. This concept was, at least partly, based on the use of endocardial indices of systolic function such as ejection fraction. Ejection fraction is generally normal or supranormal in HCM patients. However, it is well known that ejection fraction is a poor surrogate for systolic function in the presence of left ventricular hypertrophy because a normal ejection fraction is maintained by the subnormal function of additional sarcomeres laid in parallel. Reduced shortening of extra parallel sarcomeres leads to the same thickening and ejection of blood as would normal shortening of fewer sarcomeres.1 Experimental data started to separate reality from myth by showing that there is myocardial dysfunction even before the development of left ventricular hypertrophy2 because normal ejection fraction is maintained in vivo by the subnormal function of additional sarcomeres. Reduced shortening of extra parallel sarcomeres leads to the same thickening and ejection of blood as would normal shortening of fewer sarcomeres.1

We concur that isolated systolic or diastolic dysfunction do not exist. One is coupled to the other. Studies have confirmed that parameters of systolic function are important determinants of peak blood pressure response with exercise \(r = 0.62, \ p < 0.01 \). Given a blunted blood pressure response to exercise, the identification of non-compaction in patients with dilated, hypertrophic, and restrictive cardiomyopathies suggests that non-compaction may be considered as a non-specific morphological trait rather than a distinct cardiomyopathy.3 In addition, not all non-compaction associated mutations are confined to genes that encode for a specific construct or functional element of the cardiomyocyte, but have been described in genes that encode for sarcomeric, cytoskeletal, and/or cell junctional proteins.1

References

Javier Ganame
Pediatric Cardiology
University Hospitals Leuven
Leuven
Belgium

Ricardo H. Pignatelli
Lillie Frank Abercrombie Section of Pediatric Cardiology
Texas Children’s Hospital
Baylor College of Medicine
6621 Fannin TX 77030
Houston
USA
Email: cardop@bcm.tmc.edu

doi:10.1093/eurheartj/ehn029
Online publish-ahead-of-print 7 February 2008

Non-compaction: a distinct cardiomyopathy or non-specific morphological trait?

With great interest, we have read the article of Hoedemaekers et al.1 on linking non-compaction cardiomyopathy to hypertrophic, restrictive, and dilated cardiomyopathies. The authors extensively describe two families in which variable severities of non-compaction of the myocardium segregated with mutations in the cardiac ß myosin heavy chain gene (MYH7).

Although genetic heterogeneity of traditional cardiomyopathies is well recognized, the concept was, at least partly, based on the use of endocardial indices of systolic function such as ejection fraction. Ejection fraction is generally normal or supranormal in HCM patients. However, it is well known that ejection fraction is a poor surrogate for systolic function in the presence of left ventricular hypertrophy because normal ejection fraction is maintained by the subnormal function of additional sarcomeres. Reduced shortening of extra parallel sarcomeres leads to the same thickening and ejection of blood as would normal shortening of fewer sarcomeres.1 Experimental data started to separate reality from myth by showing that there is myocardial dysfunction even before the development of left ventricular hypertrophy2 because normal ejection fraction is maintained by the subnormal function of additional sarcomeres. Reduced shortening of extra parallel sarcomeres leads to the same thickening and ejection of blood as would normal shortening of fewer sarcomeres.1

We concur that isolated systolic or diastolic dysfunction do not exist. One is coupled to the other. Studies have confirmed that parameters of systolic function are important determinants of peak blood pressure response with exercise \(r = 0.62, \ p < 0.01 \). Given a blunted blood pressure response to exercise, the identification of non-compaction in patients with dilated, hypertrophic, and restrictive cardiomyopathies suggests that non-compaction may be considered as a non-specific morphological trait rather than a distinct cardiomyopathy.3 In addition, not all non-compaction associated mutations are confined to genes that encode for a specific construct or functional element of the cardiomyocyte, but have been described in genes that encode for sarcomeric, cytoskeletal, and/or cell junctional proteins.1

References

doi:10.1093/eurheartj/ehn021
Online publish-ahead-of-print 7 February 2008

Normal systolic function in hypertrophic cardiomyopathy: reality or myth?: reply

We would like to thank Efthimiadis et al. for their interest in our work. Indeed, it was long believed that patients with hypertrophic cardiomyopathy (HCM) had normal or supranormal systolic function despite mutations in genes encoding for sarcomeric proteins. This concept was, at least partly, based on the use of endocardial indices of systolic function such as ejection fraction. Ejection fraction is generally normal or supranormal in HCM patients. However, it is well known that ejection fraction is a poor surrogate for systolic function in the presence of left ventricular hypertrophy because normal ejection fraction is maintained by the subnormal function of additional sarcomeres laid in parallel. Reduced shortening of extra parallel sarcomeres leads to the same thickening and ejection of blood as would normal shortening of fewer sarcomeres.1 Experimental data started to separate reality from myth by showing that there is myocardial dysfunction even before the development of left ventricular hypertrophy2 because normal ejection fraction is maintained by the subnormal function of additional sarcomeres. Reduced shortening of extra parallel sarcomeres leads to the same thickening and ejection of blood as would normal shortening of fewer sarcomeres.1

We concur that isolated systolic or diastolic dysfunction do not exist. One is coupled to the other. Studies have confirmed that parameters of systolic function are important determinants of peak blood pressure response with exercise \(r = 0.62, \ p < 0.01 \). Given a blunted blood pressure response to exercise, the identification of non-compaction in patients with dilated, hypertrophic, and restrictive cardiomyopathies suggests that non-compaction may be considered as a non-specific morphological trait rather than a distinct cardiomyopathy.3 In addition, not all non-compaction associated mutations are confined to genes that encode for a specific construct or functional element of the cardiomyocyte, but have been described in genes that encode for sarcomeric, cytoskeletal, and/or cell junctional proteins.1

References

doi:10.1093/eurheartj/ehn021
Online publish-ahead-of-print 7 February 2008

Non-compaction: a distinct cardiomyopathy or non-specific morphological trait?

With great interest, we have read the article of Hoedemaekers et al.1 on linking non-compaction cardiomyopathy to hypertrophic, restrictive, and dilated cardiomyopathies. The authors extensively describe two families in which variable severities of non-compaction of the myocardium segregated with mutations in the cardiac ß myosin heavy chain gene (MYH7).

Although genetic heterogeneity of traditional cardiomyopathies is well recognized, the identification of non-compaction in patients with dilated, hypertrophic, and restrictive cardiomyopathies suggests that non-compaction may be considered as a non-specific morphological trait rather than a distinct cardiomyopathy.3 In addition, not all non-compaction associated mutations are confined to genes that encode for a specific construct or functional element of the cardiomyocyte, but have been described in genes that encode for sarcomeric, cytoskeletal, and/or cell junctional proteins.1

References
Non-compaction: a distinct cardiomyopathy or non-specific morphological trait?: reply

With great interest I read the letter by Germans et al., as a reaction to our manuscript titled ‘cardiac β-myosin heavy chain defects in two families with non-compaction cardiomyopathy: linking non-compaction to hypertrophic, restrictive, and dilated cardiomyopathies. Eur Heart J 2007; 28:2732–2737.

We agree that it is essential to standardize the diagnosis of non-compaction cardiomyopathy (NCCM) in the context of the cardiac myopathies, which was the main purpose of our study. We also agree that echocardiography, both quantitative and qualitative, is the most valuable tool for the diagnosis of NCCM. However, our approach to standardization was different from that of Germans et al. We aimed to define the diagnostic criteria of NCCM in the clinical setting, whereas Germans et al. aimed to define a pathological equivalent in the context of heart failure.

We acknowledge the contributions of Petersen et al. and Biagini et al. to the standardization of the diagnosis of NCCM. Petersen et al. identified a limited number of seven NCCM patients, developed diagnostic criteria for NCCM, and suggested that cardiac magnetic resonance imaging (MRI) should be used to determine whether NCCM can be considered a distinct cardiomyopathy or as a non-specific morphological trait. Biagini et al. suggested that cardiac magnetic resonance imaging may have a role in the diagnosis of NCCM.

We believe that the discussion on the diagnosis of NCCM is ongoing and that further studies are needed to better understand the pathophysiology of this condition. We also agree that the identification of NCCM-like crypts in asymptomatic HCM mutation carriers as described by Germans et al. is a valuable contribution to the field.

References

4. Sasse-Klaassen S, Probst S, Gerull B, Oechslin E, Nurnberg P, Heuser A, Jenni R. Heart failure: the latter view is exemplified by the Biagini et al. study. The discussion whether NCCM is indeed a distinct cardiomyopathy or a non-specific morphological trait has been ongoing, where the latter view is exemplified by the Biagini et al. study. This phenomenon is typical of autosomal dominant conditions and has been reported before in families with NCCM. The discussion whether NCCM is indeed a distinct cardiomyopathy or a non-specific morphological trait has been ongoing, where the latter view is exemplified by the Biagini et al. study.

Tjeerd Germans
Department of Cardiology
VU University Medical Center
De Boelelaan 1117
1081 HV Amsterdam
The Netherlands
Tel: +31 20 444 0631
Fax: +31 20 444 3395
Email: T.germans@vumc.nl
Interuniversity Cardiology Institute of The Netherlands
Utrecht
The Netherlands

Arthur A.M. Wilde
Department of Cardiology
Academic Medical Center
Amsterdam
The Netherlands
Interuniversity Cardiology Institute of The Netherlands
Utrecht
The Netherlands

Albert C. van Rossum
Department of Cardiology
VU University Medical Center
Amsterdam
The Netherlands
Interuniversity Cardiology Institute of The Netherlands
Utrecht
The Netherlands

doi:10.1093/eurheartj/ehn032
Online publish-ahead-of-print 7 February 2008

References

4. Sasse-Klaassen S, Probst S, Gerull B, Oechslin E, Nurnberg P, Heuser A, Jenni R. Heart failure: the latter view is exemplified by the Biagini et al. study. The discussion whether NCCM is indeed a distinct cardiomyopathy or a non-specific morphological trait has been ongoing, where the latter view is exemplified by the Biagini et al. study.