Imaging

Imaging and atrial fibrillation: the role of multimodality imaging in patient evaluation and management of atrial fibrillation

Laurens F. Tops, Martin J. Schalij, and Jeroen J. Bax*

Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands

Keywords: Atrial fibrillation • Catheter ablation • Imaging • Echocardiography • Multi-slice computed tomography • Magnetic resonance imaging

Clinical evaluation of patients with atrial fibrillation

Since the prevalence of AF is steadily increasing, an ever-growing number of patients in the outpatient clinic will present with AF.
In the following paragraphs, we will focus on the role of imaging while answering the question ‘What should be evaluated in patients presenting in the outpatient clinic with AF?’.

First, important factors associated with AF should be evaluated. A large number of (clinical) conditions, including structural heart disease, hypertension, surgery, hyperthyroidism, and drugs, are associated with AF. To diagnose these clinical conditions, medical history, physical examination, and blood tests are often sufficient. However, other conditions associated with AF require (non-invasive) imaging for appropriate assessment. One of these conditions is underlying structural heart disease. Hence, an important question in the initial clinical evaluation of an AF patient is: ‘Is there any underlying heart disease present?’ Subsequently, the question arises: ‘Which imaging techniques can be used to detect the underlying heart disease?’.

Underlying heart disease

In the clinical evaluation of patients with AF, it is essential to evaluate underlying structural heart disease that may cause, or is associated with, AF. Since the presence of ‘true’ lone AF is controversial, a potential reversible cause of AF (such as myocardial ischaemia) should be excluded in the first assessment of a patient presenting with AF. In the Euro Heart Survey on Atrial Fibrillation, 90% of the AF patients had at least one associated medical condition. Most frequently, hypertension (up to 66%), coronary artery disease (up to 36%), heart failure (up to 49%), and valvular heart disease (up to 40%) were present. The prevalence of structural heart disease was highest in patients with persistent or permanent AF.

In daily clinical practice, conventional transthoracic echocardiography is most often used to detect underlying heart disease. However, other imaging modalities may provide important information that cannot be obtained with echocardiography. In the following paragraphs, the various cardiac conditions associated with AF, and the different imaging modalities to assess these conditions, will be discussed.

Coronary artery disease

The presence of coronary artery disease should be assessed in patients presenting with AF. Large cohort studies have reported a high prevalence of coronary artery disease among patients with AF. In 2768 patients with first detected AF, the incidence of coronary ischaemic events was 31 per 1000 person-years. Further, it has been suggested that AF may be the first manifestation of cardiac ischaemia. Typically, a stepwise approach starting with the evaluation of individual risk factors and exercise stress tests is applied when screening for coronary artery disease. However, non-invasive imaging modalities may have incremental value over traditional risk factors.

Various imaging modalities are available for the assessment of coronary artery disease in patients with AF. Conventional angiography remains the gold standard for the detection of significant coronary artery stenosis. In recent years, non-invasive assessment of coronary artery disease with multi-slice computed tomography (MSCT) has become available. This technique enables non-invasive detection of significant coronary artery stenosis with a high sensitivity and specificity. It should be noted, however, that the diagnostic accuracy of MSCT may be limited in patients with AF during data acquisition. In addition, MSCT still is limited by higher radiation exposure when compared with conventional angiography. New techniques, such as the use of dose modulation during scanning, may reduce radiation exposure. In a recent study, the presence of coronary artery disease was evaluated with MSCT in 150 patients with AF and 148 patients with similar age, gender, symptomatic status, and pretest likelihood, but without a history of AF. Interestingly, a higher prevalence of obstructive coronary artery disease was noted in the AF patients, compared with the non-AF patients (41% in AF patients vs. 27% in non-AF patients, P = 0.01). However, more studies are needed to fully appreciate the role of MSCT in the screening for coronary artery disease in AF patients.

Nuclear myocardial perfusion imaging provides information on the presence of ischaemia, a surrogate marker for coronary artery disease; the diagnostic accuracy of nuclear perfusion imaging to detect significant coronary artery stenoses is high. It has been shown that nuclear imaging has similar diagnostic accuracy for the detection of coronary artery disease in asymptomatic patients with AF when compared with patients without AF. have demonstrated the prognostic value of ischaemia detection with single-photon emission computed tomography in 384 patients with AF and 15 664 patients without AF. The cardiac death rate was 6.3% per year in the AF patients with mildly abnormal myocardial perfusion scan, compared with 1.2% per year in the non-AF group with similar perfusion findings. This finding further underlines the importance of screening for coronary artery disease in AF patients.

Heart failure

The presence of left ventricular (LV) systolic dysfunction or heart failure should be assessed in AF patients. The close relation between AF and heart failure has been well appreciated. In the Euro Heart Survey on Atrial Fibrillation, 135 patients (5%) developed new onset heart failure during 1-year follow-up, while 314 patients (24.7%) experienced worsening of existing heart failure. The Framingham Heart Study demonstrated a 4.5- to 5.9-fold increased risk for the development of AF in men and women with LV systolic dysfunction. The exact pathophysiological mechanism underlying the association between AF and LV dysfunction is only partially understood, but includes electromechanical factors, cellular and extra-cellular changes, and neurohumoral modulation.

For the assessment of LV systolic function, conventional two-dimensional transthoracic echocardiography is typically used. Using standard apical images, LV volumes can be assessed and subsequently LV ejection fraction can be calculated. Although conventional echocardiography is most frequently used in daily clinical practice, the accuracy of this technique largely depends on the operator and LV morphology. Therefore, in general, magnetic resonance imaging (MRI) is considered the gold standard for assessment of LV volumes. However, it should be noted that pacemakers still are a contra-indication for cardiac MRI. In addition, gadolinium for delayed-enhancement MRI should not be used in patients with severely impaired renal function, due to the risk of nephrogenic systemic fibrosis. Nuclear imaging and MSCT can also be used for the assessment of LV function, but these
techniques are associated with radiation. Novel real-time three-dimensional echocardiography allows accurate assessment of LV volumes and systolic function, and good agreement between this technique and MRI has been reported. However, more studies on the accuracy of this technique in patients with AF are needed.

Valvular heart disease
Another condition that is associated with AF is valvular heart disease. In the Euro Heart Survey, about 20% of AF patients had valvular heart disease, with the highest prevalence among patients with persistent or permanent AF. Most often, mitral valve disease is present, resulting in elevated left atrial (LA) pressures and subsequently in a higher susceptibility to AF.

Transthoracic echocardiography is typically used for the assessment of valvular disease in patients with AF. It allows a comprehensive anatomical and functional evaluation of the different valves. Recently, the feasibility of both MRI and MSCT to assess valvular heart disease has been demonstrated. However, in daily clinical practice, conventional echocardiography remains the technique of choice to assess valvular heart disease in AF patients.

Left ventricular hypertrophy
The presence of LV hypertrophy should be evaluated in the initial assessment of AF patients. Long-lasting hypertension may result in LV hypertrophy and may expose the LA to elevated pressures. Since hypertension may be present in up to 66% of patients presenting with AF, screening for LV hypertrophy is essential. In 1924 patients of the Framingham Heart Study, increased LV wall thickness was one of the predictors for the development of AF over a 7.2-year period (HR 1.28 per 4-mm increment, 95% CI, 1.03–1.60). Importantly, it has been suggested that antihypertensive therapy targeted at regression or prevention of LV hypertrophy may reduce the incidence of new-onset AF.

In addition to conventional criteria using electrocardiography, various imaging modalities can be used for the screening for LV hypertrophy in AF patients. In daily clinical practice, transthoracic echocardiography is most frequently used. Using standard echocardiographic images, LV wall thickness and LV mass can be assessed. However, three-dimensional imaging techniques such as MRI may provide a more accurate quantification of LV hypertrophy. Real-time three-dimensional echocardiography may overcome the limitations of conventional echocardiography and may be comparable with MSCT and MRI for assessment of LV hypertrophy.

Left atrial size
In addition to underlying structural heart disease and LA size, the presence of thrombus should be assessed in selected patients presenting with AF. Although there are various sources of embolism in patients with ischaemic stroke, the majority of strokes occurring in patients with AF can be attributed to the presence of thrombo-embolism in the LA. Therefore, screening for thrombus formation is of critical importance, in particular in patients undergoing cardioversion or catheter ablation for AF. The question arises: ‘Which imaging technique should be used for the screening for LA thrombi?’

Conventional transthoracic echocardiography can be used to assess LA dilatation and severe LV dysfunction, both associated with the presence of LA thrombi and stroke. However, this technique has only moderate sensitivity and specificity for the detection of LA thrombi. In contrast, transoesophageal echocardiography has a very high sensitivity and specificity for detection of cardiogenic sources of thrombo-embolism. In addition,
spontaneous echo contrast and reduced LA appendage flow velocity, associated with LA thrombus formation, can be assessed with transoesophageal echocardiography. Importantly, it has been demonstrated that the use of transoesophageal echocardiography may result in less haemorrhagic complications after cardioversion, compared with a conventional strategy using anticoagulation prior to cardioversion.42

Non-invasive three-dimensional imaging techniques such as MRI and MSCT have also been used for the detection of thrombi in the LA and LA appendage. However, both techniques have low interobserver agreement, and moderate sensitivity and specificity compared with transoesophageal echocardiography.43,44 Therefore, at present transoesophageal echocardiography is still considered the gold standard for the detection of thrombi in the LA and LA appendage in patients with AF.1

Patients with atrial fibrillation undergoing catheter ablation

After the initial assessment as described before, a tailored treatment strategy should be planned for each AF patient. Radiofrequency catheter ablation is a good therapeutic option when at least one anti-arrhythmic drug has failed.1 A recent study including 1404 AF patients undergoing PV isolation demonstrated that 78% of patients with paroxysmal AF and 67% of patients with non-paroxysmal AF (P < 0.001) maintain sinus rhythm after a single catheter ablation procedure.45 Although various ablation strategies exist, the majority of approaches target electrical isolation of the PVs.6 In the following paragraphs, the question ‘What is the role of imaging in catheter ablation for AF?’ will be answered. Before the procedure, during the actual ablation and during follow-up, various imaging modalities play a different role (Table 1). The different processes and the preferred imaging modalities will be reviewed in the following paragraphs.

Pre-procedural issues: contra-indications and assessment of anatomy

The first step in the work-up of a patient referred for AF ablation is to exclude any contra-indication. The most important is to rule out the presence of LA thrombi. In particular, in patients with persistent AF, or patients who are in AF at the time of the procedure, this is of critical importance.6 As discussed previously, transoesophageal echocardiography is considered the gold standard for the detection of thrombi in the LA and LA appendage in patients with AF.1

Table 1 | Imaging modalities for the detection of LA and PV anatomy

<table>
<thead>
<tr>
<th>Method</th>
<th>LA volume formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cube</td>
<td>4/3 π (APD/2)³</td>
</tr>
<tr>
<td>Ellipsoid</td>
<td>4/3 π (APD/2)(D/2)(L/2)</td>
</tr>
<tr>
<td>Biplane area-length</td>
<td>8/3 π [(A2CH)(A4CH)/L]</td>
</tr>
<tr>
<td>Modified Simpson’s rule</td>
<td>Summation of discs</td>
</tr>
</tbody>
</table>

Figure 1 Using transthoracic echocardiography, various methods are available to assess left atrial size. The standard parasternal long-axis view (PSLAX) and the apical two-chamber (2CH) and four-chamber (4CH) views are used to assess left atrial diameters and left atrial area (using planimetry). Subsequently, left atrial volume can be calculated with the different equations. APD, D, and L, left atrial diameter; A2CH, left atrial area on two-chamber view; A4CH, left atrial area on four-chamber view.
present: two right-sided and two left-sided PVs. Large in vivo studies using MSCT and MRI scanning have demonstrated that a single PV ostium on the left side or an additional right-sided PV are the most common variations (Figure 3). These anatomical variants may be present in up to 30% of patients, and may affect the planned ablation strategy. In general, three-dimensional imaging techniques such as MSCT and MRI are used for assessment of PV anatomy. Using three-dimensional reconstructions and cross-sectional images, these techniques provide the most detailed information on PV anatomy.

In addition to the number of PVs, the exact diameter and shape of the PVs should be assessed. Knowledge on PV diameter may be very helpful, especially for new ablation strategies using balloon-catheters. In addition, comparison of PV diameters at baseline and during follow-up allows detection of PV stenosis after catheter ablation.

Finally, specific anatomical features of the LA, such as the LA appendage, variations in LA roof anatomy, and the ‘Coumadin ridge’ between the left-sided PVs and the LA appendage, can be assessed prior to the ablation procedure. Surrounding structures that may be important during catheter ablation can be identified, including coronary veins, coronary arteries, and the course of the oesophagus. For these issues, MSCT and MRI are the preferred imaging modalities.

During catheter ablation: visualization of structures and image integration

During the actual catheter ablation procedure, mapping and ablation catheters are introduced into the LA after a transseptal puncture. This is typically performed under fluoroscopy guidance, but intracardiac echocardiography can be used to better visualize the inter-atrial septum and puncture needle. After gaining access to the LA, the exact location and anatomy of the PV ostia is determined, and the position of the mapping/ablation catheters in relation to them. For this purpose, various imaging modalities are available.

Fluoroscopy is the most widely used imaging technique in the electrophysiology laboratory. However, correct visualization of cardiac structures may be limited with fluoroscopy alone. In recent years, a new application of conventional fluoroscopy has been introduced: rotational angiography uses a C-arm flat-panel fluoroscopy system and contrast medium to create three-dimensional images of the LA and PVs. It has been demonstrated...
Table 1 The role of imaging in atrial fibrillation ablation

<table>
<thead>
<tr>
<th>Process</th>
<th>Imaging modality</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before catheter ablation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment of LA / LAA thrombus</td>
<td>TEE</td>
<td>Considered gold standard for detection of thrombi</td>
</tr>
<tr>
<td>Assessment of LA size and anatomy</td>
<td>TTE, RT3DE, MSCT or MRI</td>
<td>Most often used in daily clinical practice. New technique allowing accurate assessment of LA volumes. Allow three-dimensional assessment of LA volumes and specific anatomic features. Considered gold standard for assessment of LA volumes</td>
</tr>
<tr>
<td>Assessment of PV anatomy</td>
<td>MSCT or MRI</td>
<td>Provide detailed three-dimensional information on PV anatomy as a ‘road-map to ablation’</td>
</tr>
<tr>
<td>During catheter ablation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positioning catheters</td>
<td>Fluoroscopy</td>
<td>Standard imaging modality in the electrophysiology laboratory. Enables visualization of catheters and devices.</td>
</tr>
<tr>
<td>Transseptal puncture</td>
<td>ICE</td>
<td>May enhance safety of transseptral puncture by direct visualization of inter-atrial septum and puncture needle</td>
</tr>
<tr>
<td>Visualization of LA and PVs</td>
<td>Fluoroscopy, ICE, Mapping system</td>
<td>New rotational angiography technique accurately identifies PV anatomy and PV diameters. Allows real-time assessment of PV ostium, but underestimates PV diameter. Provides real-time electroanatomic information, and guides ablation. Limited by the use of reconstructed anatomy.</td>
</tr>
<tr>
<td>Image integration</td>
<td>Fluoroscopy and MSCT/MRI</td>
<td>Combines real-time fluoroscopy with detailed LA and PV anatomy from MSCT or MRI</td>
</tr>
<tr>
<td></td>
<td>Mapping system and MSCT/MRI</td>
<td>Combines electroanatomic map with detailed LA and PV anatomy from MSCT or MRI</td>
</tr>
<tr>
<td></td>
<td>Mapping system and ICE</td>
<td>Combines electroanatomic map with real-time anatomic information from ICE</td>
</tr>
<tr>
<td>Follow-up after catheter ablation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment of PV stenosis</td>
<td>MSCT or MRI</td>
<td>Preferably, these three-dimensional techniques are correlated with pre-procedural images for detection of PV stenosis</td>
</tr>
<tr>
<td>Detection of pericardial effusion</td>
<td>TTE</td>
<td>Routine echocardiography should be performed before discharge and during follow-up</td>
</tr>
<tr>
<td>Esophageal injury</td>
<td>MSCT or MRI, TTE</td>
<td>Should be performed when atrio-oesophageal fistula is suspected</td>
</tr>
<tr>
<td>Assessment of LA size and function</td>
<td>MSCT or MRI, RT3DE, MSCT, MRI</td>
<td>Conventional method for detection of LA volumes and function. Three-dimensional assessment of LA volumes allows detection of LA reverse remodelling. Preliminary studies demonstrate feasibility of LA scar detection with gadolinium enhanced MRI</td>
</tr>
</tbody>
</table>

ICE, intracardiac echocardiography; LA, left atrium/atrial; LAA, left atrial appendage; MRI, magnetic resonance imaging; MSCT, multi-slice computed tomography; PV, pulmonary vein; RT3DE, real-time three-dimensional echocardiography; TEE, transoesophageal echocardiography; TTE, transthoracic echocardiography.

that this technique correctly identifies PVs and provides PV diameters that correlate well with those derived from pre-procedural acquired MSCT images.56

Intracardiac echocardiography can be used in addition to fluoroscopy to visualize the PVs. This technique provides real-time images of the PVs and neighbouring structures. In addition, it may be very helpful in avoiding complications during the ablation.57 A limitation of intra-cardiac echocardiography is its two-dimensional character. As a result, PV diameters may be underestimated when compared with three-dimensional imaging techniques.58,59

Electroanatomic mapping systems may also be used in addition to fluoroscopy. These systems provide on-line electrophysiological data, and allow tracking of mapping/ablation catheters and annotation of ablation points.60 A limitation of electroanatomical mapping systems, however, is the use of reconstructed anatomy. Finally, three-dimensional imaging techniques such as MSCT and MRI can provide very detailed information on LA and PV anatomy.

However, scanning is performed before the ablation procedure, and therefore these techniques cannot provide real-time images.

Although the various imaging modalities all provide important information during the catheter ablation procedure, each technique has its own limitations. Integration of the different modalities may overcome the limitations of each separate modality. Hence, the question is: ‘Is it possible to integrate different imaging modalities during AF ablation?’

In recent years, various image integration systems have been introduced, allowing integration of different imaging modalities. Dedicated software has been developed to integrate biplane fluoroscopy and MSCT or MRI images.61 Angiographic reconstructions of the LA and PVs from fluoroscopy and three-dimensional volume rendered reconstructions from pre-procedural acquired MSCT or MRI images are merged with the use of calibration, translation, and rotation processes. Several studies have demonstrated the feasibility of this new technique and its value during AF ablation.62,63
In the past years, a large amount of clinical experience has been obtained with the integration of electroanatomic maps and three-dimensional techniques such as MSCT and MRI. This image integration strategy uses algorithms that minimize the distance between the reconstructed anatomy from the electroanatomic map and the MSCT or MRI image. Importantly, it has been demonstrated that the use of image integration may improve the outcome of the ablation procedure. In a cohort of 290 patients (145 patients with image integration, 145 patients with conventional mapping and ablation approach), the AF-free survival rate was significantly higher in patients with image integration (Figure 4). However, this finding was not confirmed in a smaller, randomized study: single procedure success after 6 months follow-up was similar in patients with image integration and conventional mapping approach (50 vs. 56%, \(P = 0.65 \)). More randomized controlled trials are needed to fully appreciate the role of integration of electroanatomic maps and MSCT or MRI images in catheter ablation procedures, and the impact on procedure/fluoroscopy times and outcome. Nonetheless, image integration facilitates AF ablation by combining on-line electrophysiologic and detailed anatomic information.

Figure 3 Three-dimensional volume-rendered reconstructions of multi-slice computed tomography images are created to assess left atrial and pulmonary vein anatomy. Normal pulmonary vein anatomy includes four pulmonary veins draining separately into the left atrium (upper panel). Variations of pulmonary vein anatomy include a single (or ‘common’) ostium of the left-sided pulmonary veins (lower left panel, black double-arrow), and an additional right-sided pulmonary vein (lower right panel, black arrow). LIPV, left inferior pulmonary vein; RIPV, left superior pulmonary vein; RSPV, right superior pulmonary vein.

Figure 4 The use of image integration during catheter ablation may significantly improve the outcome of the procedure. In patients treated with catheter ablation using image integration, the atrial fibrillation-free survival rate was significantly higher when compared with patients who were treated with conventional electroanatomic mapping alone (atrial fibrillation-free survival rate 88 vs. 69%, \(P < 0.05 \)). (Adapted from Della Bella et al.)
More recently, integration of intracardiac echocardiography, electroanatomic mapping, and MSCT has become available (Figure 5). With the use of a dedicated intracardiac echocardiography probe that is tracked by the electroanatomic mapping system, a real-time electrophysiological and anatomic reconstruction of the LA and PVs is created. Subsequently, it is integrated with MSCT images, adding detailed anatomic information. Although it is a promising strategy, more studies are needed to appreciate the role of this new technique and its effect on the outcome of catheter ablation for AF.

Follow-up issues: assessment of complications and evaluation of left atrial function

Immediately after the procedure and during follow-up, patients should be screened for complications. A large survey revealed that serious complications occur in up to 6% of patients. Therefore, it is important to know: ‘Which complications can be expected and how can they be assessed?’.

Pulmonary vein stenosis is one of the most frequently occurring complications of AF ablation. Fortunately, the prevalence is decreasing due to more proximal ablation strategies. Asymptomatic PV stenosis may occur in up to 19% of patients, whereas symptomatic PV stenosis requiring intervention occurs in <1% of patients. Conventional invasive angiography assessing PV diameters may be used for the detection of PV stenosis. However, three-dimensional imaging techniques such as MSCT or MRI are recommended for accurate assessment of PV stenosis.

Severe pericardial effusion or cardiac tamponade is another serious complication after AF ablation. In a recent meta-analysis with 70 studies including approximately 15,500 AF patients, cardiac tamponade was reported in up to 5% of the patients (median from all studies 1%). During the procedure, invasive blood pressure measurement, fluoroscopy, and transthoracic echocardiography are helpful tools to detect pericardial effusion. In addition, intracardiac echocardiography can be used during the procedure. Conventional transthoracic echocardiography is the preferred imaging modality for screening during follow-up.

Finally, injury to the oesophagus may occur after ablation, since the oesophagus has a close relation with the posterior LA wall and PVs. A rare but severe complication is an atrio-oesophageal fistula. Multi-slice computed tomography or MRI should be performed when this complication is suspected.

In addition to the detection of complications, the effects of catheter ablation on cardiac function may be assessed during follow-up. It has been demonstrated that AF ablation has favourable effects on LV systolic function in patients with heart failure. In contrast, in patients with preserved LV systolic function, LV ejection fraction does not change after successful catheter ablation. However, it may be that LV ejection fraction is not a sensitive marker to detect subtle changes in LV systolic function. Recently, it has been demonstrated that global LV systolic strain does improve in patients with preserved LV systolic function who maintain sinus rhythm after catheter ablation.

Figure 5 The feasibility of the integration of electroanatomic mapping, intracardiac echocardiography and multi-slice computed tomography has recently been demonstrated. A dedicated intracardiac echocardiography probe provides real-time anatomic images that are integrated with pre-procedural acquired multi-slice computed tomography images. On the ECG-gated intracardiac echocardiography images, the anatomy of the left atrium and pulmonary veins can be annotated, creating a three-dimensional shell (right panel). Subsequently, the three imaging modalities are integrated with dedicated algorithms (left panel).
recurrence of AF did not show a significant improvement in LV systolic strain.

Furthermore, since extensive ablation in the LA may result in scar formation and subsequently in changes in LA anatomy, one could wonder: ‘What is the effect of catheter ablation on LA size and function?’ As previously described, there is a strong association between AF and LA enlargement. Interestingly, it has been demonstrated that restoration of sinus rhythm may result in reversal of LA enlargement. Several studies have demonstrated a decrease in LA volumes after successful catheter ablation. Typically, transcoronary echocardiography is used for the follow-up of LA volumes. However, three-dimensional techniques may provide more accurate information, as previously described. With the use of real-time three-dimensional echocardiography, it has been shown that LA maximum volume decreases in patients who maintain sinus rhythm during follow-up. Similarly, LA reverse remodelling has also been demonstrated with MSCT and MRI.

Furthermore, AF ablation may affect LA function. Three distinct phases can be distinguished in LA function: LA reservoir function

Figure 6 Left atrial active emptying fraction (representing left atrial active function) improves in patients who maintain sinus rhythm during follow-up (green bars). In contrast, a deterioration of left atrial active emptying fraction is noted in patients who have recurrence of atrial fibrillation during follow-up (red bars). (Adapted from Marsan et al.37)

Figure 7 Multimodality imaging plays an important role in the evaluation of atrial fibrillation patients, and in the management of atrial fibrillation. Various modalities are available for screening for underlying heart disease causing atrial fibrillation. For left atrial size assessment, various methods are available; three-dimensional imaging techniques provide the most accurate estimation. In particular, in the non-pharmacological treatment of atrial fibrillation, imaging plays an important role in patient selection and guidance of the procedure. See text for explanation.
Multimodality imaging in atrial fibrillation

Conclusions

Multimodality imaging plays an important role in the initial assessment of AF patients, and during subsequent invasive treatment with catheter ablation (Figure 7). An important issue to consider in the first evaluation of AF patients is the presence of any underlying heart disease that is associated with AF: coronary artery disease, heart failure, valvular heart disease, and LV hypertrophy. Any (reversible) underlying disease that causes AF should be treated first. Furthermore, LA size should be assessed in the initial evaluation of AF patients. For the routine assessment of LA size, transesophageal echocardiography is the technique of choice. Preferably, LA volumes are assessed for estimation of LA size.

After the initial assessment of the AF patient, a treatment strategy is chosen (pharmacological vs. non-pharmacological). Multimodality imaging is of particular value in the non-pharmacological treatment of AF. In patients undergoing cardioversion or catheter ablation, LA thrombi should be excluded with transesophageal echocardiography. Before catheter ablation, PV anatomy should be evaluated, preferably with three-dimensional imaging techniques such as MSCT or MRI. During the actual ablation procedure, different imaging modalities are available for visualization of cardiac anatomy. New dedicated systems allow integration of the various modalities, further facilitating catheter ablation procedures. After the ablation procedure, imaging plays an important role in the detection of complications. Finally, the effects of the catheter ablation procedure on LA size and function can be assessed with various imaging modalities.

Conflict of interest: M.J.S. has received grants from Biotronik, Medtronic, and Boston Scientific Corporation. J.J.B. has received grants from Biotronik, Medtronic, Boston Scientific Corporation, Bristol-Myers Squibb Medical Imaging, St Jude Medical, GE Healthcare, and Edwards Lifesciences.

References

