Imaging

Imaging the right heart: the use of integrated multimodality imaging

Emanuela R. Valsangiacomo Buechel1* and Luc L. Mertens2

1Division of Paediatric Cardiology and Children’s Research Centre, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland; and 2The Labatt Family Heart Center, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada

Keywords
Right ventricle • Multimodality imaging • Echocardiography • Cardiac magnetic resonance imaging

Introduction

The right ventricle (RV) has for a long time been the neglected side of the heart, but its role in different cardiovascular diseases has been increasingly recognized. This is obvious for structural congenital heart defects (CHD) involving the RV such as pulmonary valve stenosis, tetralogy of Fallot (TOF), and Ebstein malformation. Beyond this, RV function has been shown to be one of the most important outcome determinants in patients with pulmonary arterial hypertension (PAH). Also in patients with cardiomyopathy and ischaemic heart disease, RV dysfunction has been shown to be a strong predictor of adverse events, independent from left ventricular (LV) function and the presence of ischaemia. Different imaging modalities can be used for imaging the RV. Due to technological advances, the role and clinical use of these techniques is evolving. In different conditions, each technique provides complementary information and this influences its use in clinical practice. Currently, echocardiography and cardiac magnetic resonance (CMR) imaging are the two most commonly used imaging techniques for structural and functional evaluation of the RV. Other imaging modalities such as multidetector-computed tomography (MDCT) and radionuclide techniques are valuable alternatives in selected patients.

Right ventricular structure and function

Correct identification of the morphologic RV is the first important step for RV assessment, independently from the imaging modality used. The segmental approach to cardiac anatomy helps define the cardiac structures and segments based on constant anatomical features. The gross anatomy of the RV differs from the LV as it has a more complex geometrical shape being ‘wrapped around’ the LV. This complex geometry precludes imaging the inflow and outflow tract in a single two-dimensional plane. Compared with the LV, the RV myocardium is significantly more trabeculated, and the RV wall much thinner with a normal compacted wall thickness of 3–5 mm in the adult population.

The structural organization of the myocardial cells has a characteristic complex three-dimensional myofiber arrangement. The LV wall has a three-layered structure with the epicardial cells...
oriented obliquely, the mid-myocardial cells more circumferential-
ly, and the endocardial cells again obliquely. The well-developed
midwall circumferential layer is responsible for the predominance
of circumferential shortening and radial thickening in the LV. The
RV epicardial fibres are oriented obliquely and contiguous with
epicardial LV fibres, the midwall circumferential layer is poorly
developed and the endocardial fibres are oriented longitudinally.
This fibre structure explains why RV ejection is determined by lon-
gitudinal shortening rather than by circumferential deformation.
The normal RV contraction results in a peristaltic contraction
going from the inflow to the outflow part of the RV. In case of
RV hypertrophy, the hypertrophied fibres seem to be oriented
more circumferentially and circumferential and radial shortening
contribute more to RV ejection.

The RV is also functionally different from the LV. Right ven-
tricular pressure–volume loops are more triangular compared
with the rectangular LV loops and have very short or absent isovo-
lumetric contraction and relaxation periods. The RV responds
differently to acute and chronic stressors as well as to pharmaco-
logical agents. The RV is more sensitive to both acute and chronic
pressure loading and is at risk for acute and chronic RV failure.

Recent data have suggested that in both ventricles, different mo-
lecular pathways are involved in the adaptive myocardial response
to changes in loading conditions, and has potential implications for targeted pharmacological treatment
of RV failure.

Interventricular interaction is another important aspect of RV
disease: RV hypertrophy and/or dilatation affect LV function. The increased transseptal gradient associated with RV hyperten-
sion causes bowing of the interventricular septum towards the
LV. In RV dilatation, this occurs during diastole influencing LV
filling, and in the case of elevated RV systolic pressure, this can
affect LV systolic function and mechanics. Thus, RV abnormalities
may indirectly affect LV output and overall cardiac performance.

Imaging modalities

Echocardiography

Right ventricular morphology can generally be adequately
described by transthoracic echocardiography in most patients.
Only when transthoracic imaging windows are poor and RV
disease is suspected, additional imaging may be required. Depend-
ing on patient age and clinical problem, transoesophageal echocar-
diography, CMR, or MDCT can be used.

Assessment of RV size and function should be part of every
echocardiographic examination at the time of first diagnosis and
during serial follow up, particularly in patients with chronic condi-
tions, such as PAH and cardiomyopathy. Guidelines for the echo-
cardiographic evaluation of the RV have been published for the
adult and paediatric population. Both guidelines stress the im-
portance of combining different 2D echocardiographic views for
obtaining full coverage of the different RV segments. Different
apical views as well as subcostal and parasternal long-axis and
short-axis views should be acquired (Figure 1). Echocardiographic
evaluation should also include 2D measurements of right atrial
dimensions and RV wall thickness. The most commonly used
normal values for the adult population reported in the echocardio-
graphic guidelines as a summary of several studies are shown in
Table 1. These proposed normal data have some limitations: the re-
producibility of different measurements needs to be tested and the
normal data will have to be stratified for age ranges, body size, and
gender. Assessment of RV volumes using 2D echocardiography is
more challenging. Two-dimensional RV measurements as well as
different geometrical formula proposed for volume calculation

Figure 1 Measurement of right ventricular (RV) dimensions using echocardiography. Two-dimensional measurements should be made in dif-
ferent parts of the RV. (A) From the apical four-chamber view, the inflow part of the RV is measured as the maximal short-axis dimension in the
basal one-third of the RV (RV1). The midcavity dimension is measured in the middle third of the RV at the level of the papillary muscles (RV2).
This represents the trabecular part of the RV. The longitudinal dimension is measured from the middle of the tricuspid valve to the RV apex
(RV3). (B) From the parasternal long-axis view, the proximal part of the right ventricular outflow tract is measured.
show poor agreement with three-dimensional (3D) volumes calculated by CMR. Recently, 3D echocardiography has emerged as a promising technique for the assessment of RV volumes. Different methods have been proposed for the analysis of 3D volumetric data sets; the most commonly used being the Beutel technique. This method has been proven to be reliable and accurate in different conditions, including CHD and PAH. The challenge of acquiring a good quality full volumetric 3D data set, including the RV anterior wall and the RV apical lateral segments, in patients with poor imaging windows and/or dilated RV is the main limitation of the method. Moreover, accuracy tends to decrease with increasing RV dilatation, limiting its application in the more dilated ventricles.

Three-dimensional echocardiography can also be useful for imaging the tricuspid valve, as all three leaflets and commissures can be visualized in a single 3D image. The mechanisms of tricuspid regurgitation can be better understood, which facilitate guiding surgical repair.

Due to the limitations discussed above, echocardiographic assessment of RV function remains challenging in clinical practice and often is limited to subjective qualitative assessment. Recent guidelines recommend performing quantitative measurements of RV function by using at least one of the following echocardiographic parameters as surrogate of volumetric assessment of RV function: percent fractional area change (FAC), tricuspid annular plane systolic excursion (TAPSE), or RV index of myocardial performance (RIMP).

Table 1 Two-dimensional measurements of the right ventricular cavity

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Normal value</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV 1 (RV basal diameter)</td>
<td><4.2 cm</td>
<td>Influenced by probe rotation</td>
</tr>
<tr>
<td>RV 2 (midcavity diameter)</td>
<td><3.5 cm</td>
<td>Requires RV-focused view</td>
</tr>
<tr>
<td>RV 3 (base-apex RV length)</td>
<td><8.6 cm</td>
<td>Level of measurement not clearly defined</td>
</tr>
<tr>
<td>RV end-diastolic area</td>
<td><28 cm³</td>
<td>Normal value?</td>
</tr>
<tr>
<td>RVOT parasternal short axis just proximal to pulmonary valve</td>
<td>2.7 cm</td>
<td>Definition of RV apex?</td>
</tr>
<tr>
<td>RVOT parasternal long axis</td>
<td>3.3 cm</td>
<td>Definition of trabeculations can be difficult</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Normal value</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA major dimension (apical 4C)</td>
<td><5.3 cm</td>
<td>Influenced by imaging plane</td>
</tr>
<tr>
<td>RA minor dimension</td>
<td><4.4 cm</td>
<td>Relatively few normative data</td>
</tr>
<tr>
<td>RA end-systolic area</td>
<td><20 cm²</td>
<td>Imaging plane will affect measurement</td>
</tr>
</tbody>
</table>

Table 2 Right ventricular functional measurements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Normal value</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>%FAC</td>
<td>>35%</td>
<td>Endocardial border detection can be difficult especially in systole</td>
</tr>
<tr>
<td>TAPSE</td>
<td>>16 mm</td>
<td>Load-dependent</td>
</tr>
<tr>
<td>Peak systolic tissue Doppler velocity tricuspid annulus</td>
<td>>10 cm/s</td>
<td>No imaging of the outflow tract</td>
</tr>
<tr>
<td>Peak systolic longitudinal strain of the RV lateral wall</td>
<td>No good reference value</td>
<td>Influenced by alignment with the motion</td>
</tr>
</tbody>
</table>

FAC, fractional area change; TAPSE, tricuspid annular plane excursion.
in different conditions and that their impact on management and outcome remains uncertain.

Fractional area change (Figure 2) has been shown to correlate with RV EF calculated by CMR and to be an independent predictor for outcome after myocardial infarction. However, image quality and visualization of the endocardial borders are often limited especially in the RV lateral wall and RV apex. Tricuspid annular plane systolic excursion (Figure 3) is easy to measure and represents longitudinal shortening of the RV lateral wall, but normal values for different age groups and its validation are limited. In addition, the presence of tricuspid regurgitation may influence the values obtained. Right ventricular index of myocardial performance is a Doppler method combining measurement of isovolumic contraction and relaxation times. Right ventricular index of myocardial performance is load dependent and due to the short RV isovolumic time intervals, its use remains controversial.

Emerging echocardiographic techniques like tissue Doppler (TDI) and strain imaging have been applied to the assessment of RV function. Peak tissue Doppler systolic velocity in the tricuspid annulus is a measurement of RV longitudinal function (Figure 4).

Figure 2 Measurement of fractional area change (FAC). Right ventricular end-diastolic and end-systolic area is measured from an apical four-chamber view. FAC is calculated as (end-diastolic area-end-systolic area)/end-diastolic area. In the example shown FAC is 50% (normal value > 35%).

Figure 3 Tricuspid annular planar systolic excursion (TAPSE). From the apical four-chamber view, an M-mode is put through the tricuspid annulus with as good alignment as possible with longitudinal motion of the annulus. The systolic displacement of the tricuspid annulus is measured. To optimize timing, we use tissue colour M-mode which allows to well define end-diastole and end-systole on the tracings. TAPSE should be > 1.6 cm.
This technique is easy and reproducible but has the limitations of being angle-dependent, load-dependent, and influenced by the global cardiac translation and tricuspid regurgitation. In the young adult, a normal cut-off value of ≥ 10 cm/s has been proposed; however, normal data for all different age ranges and gender are lacking.29

The introduction of speckle-tracking echocardiography made the measurement of strain and strain rate easier. Although developed for the LV, speckle tracking has been applied to the RV.7,46 Peak longitudinal strain and strain rate measurement are independent from global cardiac motion and allow quantifying regional myocardial deformation in the different RV segments. Right ventricular strain has been shown to be reduced in patients with PAH,25,47,48 a systemic RV49,50 and after TOF repair51,52 (Figure 5). Although very promising, myocardial deformation imaging has significant limitations. Strain values are influenced by loading conditions, as it has been demonstrated in patients with PAH, in whom RV longitudinal strain was related to pulmonary arterial systolic pressures.25 Additionally, strain values are influenced by RV size and stroke volume. Feasibility is not always given in the thin RV wall; normal values for different age ranges, body size, and gender still have not been established yet; standardization among different software solutions is still being investigated. Therefore, TDI and speckle tracking are not ready yet for routine clinical use.53

Figure 4 Pulsed tissue Doppler of the tricuspid annulus. This a pulsed Doppler tracing obtained in the tricuspid annulus from the apical four-chamber view. A systolic peak velocity (S'), early diastolic velocity (E'), and atrial contraction velocity (A') can be measured. Notice on this trace the near absence of isovolumetric periods in this normal right ventricle. After systole, the early diastolic wave starts, after diastolic, during the isovolumetric period there is a short isovolumetric peak corresponding to changes in the myocardium during the isovolumetric period.

Figure 5 Longitudinal strain measurement in the right ventricular (RV) free wall. From the apical four-chamber view, strain curves are obtained using speckle tracking echocardiography. On the left panel, strain in the RV free wall was measured in a postoperative tetralogy of Fallot patient. This patient underwent pulmonary valve replacement and the right-hand panel reflects strain measurements 6 months after the surgery. A reduction in strain may result from changes in RV stroke volume, RV preload, and RV geometry.
Cardiovascular magnetic resonance

Cardiovascular magnetic resonance is the second-line modality after echocardiography for comprehensive RV evaluation. Cardiovascular magnetic resonance is currently considered the reference standard for functional RV studies as it allows visualizing anatomy, quantifying function, and calculating flows.

Anatomical assessment is usually performed with T1-weighted black-blood turbo spin-echo sequence or with the steady-state free precession (SSFP) sequence. Standard axial images allow segmental analysis of cardiac anatomy and visualization of the pulmonary arteries, pulmonary veins, aorta, and systemic veins. Detailed description of the intra- and extracardiac anatomy can be achieved by 3D rendering techniques, including contrast-enhanced MR angiography and 3D SSFP. This is important for detailed description of complex cardiac anatomy and for preoperative planning.54,55

Cardiovascular magnetic resonance also provides advanced imaging of the RV myocardium inclusive tissue characterization. Different T1- and T2-weighted sequences combined with late-enhancement imaging after gadolinium administration can be used for tissue characterization. Tissue characterization is used for assessment and differentiation of different cardiomyopathies affecting the RV, including arrhythmogenic RV cardiomyopathy (ARVC), metabolic storage diseases, and cardiac tumours.56–59 Late enhancement imaging shows intramyocardial fibrosis, inflammation, scars, and fat accumulation (Figure 6). In CHD, the presence of myocardial scars in the RV is supposed to be a risk factor for adverse events during follow-up.60,61 Interpretation of the images can be challenging due to the thin RV wall and the surrounding epicardial fat and pericardium. The prognostic significance of myocardial late-enhancement in various diseases needs further investigation.

Figure 6 Late gadolinium enhancement in the right ventricular free wall. Late enhancement indicating fibrosis of the right ventricular and left ventricular myocardium (arrows) in a patient with Naxos disease, a disease associated with right ventricular arrhythmogenic ventricular dysplasia.

Cardiovascular magnetic resonance is considered the clinical reference technique for accurate assessment of global RV function. Short-axis or axial SSFP images and the summation disc method are used for calculation of RV volumes and ejection fraction (EF) without any geometrical assumption (Figure 7). Appropriate spatial and temporal resolution of the images is important for accuracy of the results and can be achieved by adjusting acquisition parameters to the patient’s size and heart rate.62 Normal age- and gender-specific values for RV volumes and function have been published for the adult and the paediatric population.63,64 Provided adequate standardization, CMR RV measurements show high reproducibility with an interobserver variability <7% for the end-diastolic volume, <14% for the end-systolic volume, <7% for EF, and <20% for RV mass.63–67 Right ventricular segmentation is more challenging than LV segmentation and variability of the data can be influenced by sternal wires obscuring the RV anterior wall, correct identification of the level of tricuspid and pulmonary valve, the thin RV wall, the complex trabeculated RV cavity, and the partial volume effect in the RV apex.64 Axial acquisition of the images has been reported to improve accuracy of the measurements,68 but normal data are only available for children.65,66

Regional RV function can be evaluated qualitatively at rest and during pharmacological stress on SSFP short-axis cine loops.69 Regional dysfunction can be assessed quantitatively by using myocardial tagging or strain encoding CMR; both techniques have been shown to be feasible in the RV correlate well with echocardiographic evaluation.70,71 However, their application in the RV is technically demanding, due to the thin wall, and extensive post processing, limiting their clinical application.72

Velocity-encoded phase contrast imaging is another important CMR tool for RV evaluation. Phase contrast imaging enable quantification of RV stroke volume, pulmonary and/or tricuspid valve regurgitation, intracardiac shunts as well as of differential lung perfusion.73–75

Multidetector computed tomography

Multidetector computed tomography is not a routinely used technique for RV assessment, due to the significant radiation exposure and the use of iodinated contrast medium.76 Multidetector computed tomography is usually performed when concomitant thoracic or pulmonary disorders, such as pulmonary embolism (PE), are suspected. Multidetector computed tomography is a valuable alternative to CMR in patients with pacemaker, CMR incompatible prosthetic material and claustrophobia. Recent improvements in temporal and spatial resolution affected cardiac visualization.76 The use of MDCT for the RV has mainly been validated for the detection of PE and for work up of pulmonary hypertension.77–79 Multi-detector computed tomography is increasingly used for detecting coronary artery disease as its accuracy has been demonstrated for non-invasive visualization of both coronary arteries.77–79 Recently, radiation dose could be importantly reduced also in comparison to diagnostic coronary angiography.80

Structural evaluation of the RV by MDCT includes measurement of RV size and volumes, as well as RV free myocardial wall thickness (RV hypertrophy). Septal bowing into the LV indicates RV volume (diastolic bowing) or pressure overload (systolic bowing).
The diameters of the systemic veins and pulmonary arteries are indirect measures of elevated preload and afterload, respectively. Normal values for RV structures measured by MDCT have been recently published. ECG-gating during image acquisition is needed for functional assessment and for CT angiography of the coronary arteries. Therefore, beta-blockers are usually administered in patients with heart rate >75 per min for optimizing image acquisition. Compared with CMR, MDCT has lower temporal resolution and tends to overestimate end-systolic and end-diastolic volumes.

Radionuclide techniques
Radionuclide techniques have historically been the first modalities used for assessing RV function. They have largely been replaced by CMR and echocardiography. Nonetheless, radionuclide modalities still play a role in assessment of RV myocardial ischaemia and in patients in whom CMR is contraindicated. Among different techniques tested, gated blood-pool single photon emission computed tomography (SPECT) is the currently recommended nuclear modality for quantifying RV function, as its 3D nature overcomes the common limitations of other nuclear techniques. Gated SPECT is able to provide RV volumetric and functional data, but further studies for validation of automatic measurement algorithms are still pending.

Radionuclide techniques are of additional particular interest for assessing myocardial metabolism and perfusion. The use of positron emission tomography (PET) or SPECT for RV evaluation is in general limited by the lower overall counts attributable to the RV compared with the LV causing inconsistent RV visualization. In the pathologic RV, hypertrophy leads to an increased RV tracer uptake and results in improved RV visualization. In PAH, changes in RV myocardial metabolism and perfusion are thought to be a precursor of deterioration of systolic function, RV failure, and/or clinical symptoms, and may be used for guiding therapeutic decision making. Experimental studies using SPECT have shown that acute or chronic RV pressure overload leads to a myocardial metabolic shift from fatty acid to glucose. Positron emission tomography may be superior to SPECT for visualization of the RV, due to its superior spatial resolution and attenuation correction. More recently, 18F-fluorodeoxyglucose PET has been utilized to assess response to epoprostenol therapy in PAH patients.

Finally, new hybrid SPECT/CT and PET/CT systems are being used in the LV for assessing myocardial perfusion, metabolism, function, and anatomy (coronary arteries) in one single examination. Their feasibility in the RV still needs to be demonstrated.

Clinical application of non-invasive imaging in conditions affecting the right ventricle
Pulmonary arterial hypertension
Echocardiography plays an important role in the clinical detection of PAH and in the diagnostic work-up of some of its causes like...
left-sided heart disease or CHD. In patients with PAH at the time of first diagnostic work up, MDCT is an established modality for exclusion of pulmonary tissue disease, vascular disease, and PE.77,91 Cardiovascular magnetic resonance adds information about flow velocities and profiles in the pulmonary arteries and veins.

Right ventricular function has been shown to be an important predictor of survival in patients with PAH.2,93 The increased afterload caused by the increased pulmonary vascular resistance causes RV hypertrophy and remodelling. With the progression of the disease, the hypertrophic response becomes inadequate and can be associated with pathological changes, such as progressive RV myocardial fibrosis and dysfunction. Different echocardiographic measurements have been shown to have prognostic value in patients with PAH and are summarized in Table 3. Right atrial and RV size, %FAC, and TAPSE26,94 are good parameters for monitoring the therapeutic effect of pulmonary vasodilator treatment. Three-dimensional echocardiography has been proposed for monitoring progressive RV dilatation as a marker for disease progression.95 The effects of vasodilator therapy could be monitored by CMR, as RV volume, function, and mass can be measured more reliably and RV output can be calculated with two different techniques (volumetry and blood flow). Cardiac magnetic resonance has a higher sensitivity for detecting serial changes.96 The limited accessibility and cost are probably the main reason why it is not routinely used for follow-up in most centres. Recent CMR studies demonstrated a high incidence of fibrotic areas in the RV myocardium in PAH patients. This finding suggests that a pathological fibrotic response may contribute to progressive RV failure in these patients.97 Recent echocardiographic studies suggested that RV apex function may be affected more significantly than other RV segments.98 All these data show how multimodality imaging of the RV plays an important role in the diagnosis and management of patients with PAH.

Multidetector computed tomography has become the most important imaging test in the diagnosis of acute PE.99 Due to its very high negative predictive value (around 95%), MDCT can be used practically as a stand-alone test for the exclusion of acute PE.99 Whereas scintigraphy is still used as the main screening tool for evaluation of chronic thromboembolic pulmonary hypertension, in an acute setting and in most centres MDCT has replaced ventilation–perfusion scanning because of the high number of inconclusive results of the latest.100 Echocardiography has a low sensitivity in diagnosing PE (60–70%) and is mainly used for risk stratification.101 The echocardiographic criteria suspicious for PE include RV dilatation, hypokinesis, and signs of pulmonary hypertension such as increased tricuspid regurgitation velocity.91 Patients with RV dysfunction related to PE have been shown to be at higher risk for early mortality.102

Ischaemic right ventricular disease and right ventricular failure

Although isolated RV myocardial infarction is extremely rare, RV ischaemia complicates up to 50% of inferior myocardial infarctions.103 In acute RV ischaemia, RV free wall hypokinesia or akinisia detected by echocardiography is a qualitative and sensitive parameter for RV dysfunction,104 and in combination with RV

Table 3 Prognostic value of echocardiographic measurements in pulmonary hypertension

<table>
<thead>
<tr>
<th>Imaging parameter</th>
<th>Predictive value</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right atrial size indexed for height136</td>
<td>Increase in 5 cm²/m increases the hazard for death by 1.54 (95% confidence interval: 1.13–2.10)</td>
<td>Variability in imaging of the RA</td>
</tr>
<tr>
<td>RV diameter137</td>
<td>36.5 mm - death rate increase from 6.6/100 person years (diameter <36.5 mm) to 15.9/100 person years (diameter >36.5 mm)</td>
<td>Needs further validation</td>
</tr>
<tr>
<td>Myocardial performance index138</td>
<td>Normal 0.28 ± 0.04</td>
<td>No cut-off value</td>
</tr>
<tr>
<td>TAPSE2</td>
<td>Predictor of adverse outcome (increase by 0.1 unit increases the hazard ratio 1.3, 95% confidence interval:1.09–1.56)</td>
<td>Influenced by loading conditions</td>
</tr>
<tr>
<td>Pulmonary vascular capacitance (stroke volume/pulse pressure)139,140</td>
<td>Cut-off value 1.8 cm</td>
<td>Angle-dependent</td>
</tr>
<tr>
<td>For every 1 mm decrease in TAPSE, the unadjusted risk of death increased by 17% (hazard ratio, 1.17; 95% confidence interval 1.05–1.30)</td>
<td>Influenced by overall cardiac motion</td>
<td></td>
</tr>
<tr>
<td>Average free RV wall systolic longitudinal strain141</td>
<td>Systolic PA pressure from TR-jet; diastolic pressure from PR-jet and stroke volume from LVOT measurement</td>
<td>Difficult to measure requires: TR-jet; PR-jet; good LVOT alignment</td>
</tr>
<tr>
<td>Strong independent predictor of mortality</td>
<td>Risk ratio 3.0/mL/mm Hg decrease in PVCAP (95% confidence interval 1.2–8.0)</td>
<td></td>
</tr>
<tr>
<td>Further standardization required</td>
<td>Cut-off: > – 12.5%</td>
<td></td>
</tr>
<tr>
<td>A 2.9-fold higher rate of death per 5% absolute decline in RV free wall strain at 1 year</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LVOT, left ventricular outflow tract; PR, pulmonary regurgitation; PVCAP, pulmonary vascular capacitance; RA, right atrium; TAPSE, tricuspid annular plane excursion; TR, tricuspid regurgitation.
dilatation defines RV myocardial infarction (RVMI). Additional features of RV involvement include paradoxical septal motion due to increased RV end-diastolic pressure, tricuspid regurgitation, and severe RA enlargement with possible leftward deviation of the interatrial septum. Tricuspid annular plane systolic excursion has been shown to have prognostic value in patients with congestive heart failure, but its significance in acute RVMI is unclear. Tissue Doppler studies have demonstrated reduced systolic lateral tricuspid velocities in patients with concomitant RVMI and with ischemic RV diastolic dysfunction. Recently, the combined used of lateral tricuspid annulus velocities and RV MPI has been suggested for detecting RV dysfunction in RVMI in the acute and late phase.

Cardiac magnetic resonance is being increasingly used for diagnosis and assessment of RV ischaemia. T2-weighted sequences can depict myocardial oedema and late gadolinium enhancement suggests fibrosis after RVMI. A multicentre prospective study demonstrated that early postinfarction RV ischaemic injury is common and is characterized by the presence of myocardial oedema, late gadolinium enhancement, and functional abnormalities. Right ventricular injury is not limited to inferior infarcts but also occurs in anterior infarcts. During follow-up, RV dysfunction may be reversible and permanent myocardial damage limited. Late after myocardial infarction, CMR evaluation of RV function can be used for risk-stratification and refined management of these patients, as RVEF is an important predictor of prognosis.

In suspected CAD, MDCT enables accurate visualization of the coronary arteries, not only of the left but also of the right coronary artery. Compared with invasive coronary angiography, new generation MDCT offer equal high accuracy but delivers a significantly lower radiation dose to the patient.

In patients with congestive heart failure, decreased RV function has been found to be a critical prognostic factor, in addition to clinical parameters, such as NYHA class and exercise performance. Identification of the cause for dilated cardiomyopathy is crucial for clinical management and guiding treatment. Ischaemic cardiomyopathy can be accurately ruled out by MDCT, nuclear techniques, and/or by CMR. Different late enhancement pattern at CMR is indicative for different non-ischaemic causes of cardiomyopathy, including myocarditis, cardiac amyloidosis, sarcoidosis, Anderson–Fabry disease, and other storage diseases.

In summary in ischaemic RV disease and RV failure, the different imaging modalities provide complementary information. Echocardiography is used for basic evaluation and routine follow-up of RV function. CMR helps distinguish between non-ischaemic and ischaemic RV failure and show myocardial oedema and scars after myocardial infarct, MDCT provides accurate non-invasive imaging of the coronary arteries.

Arrhythmogenic right ventricular dysplasia

Arrhythmogenic RV cardiomyopathy is a typical myocardial disorder affecting primarily the RV. In the early stages of the disease, structural changes may be subtle or absent and confined to a localized region of the RV, typically within the so-called triangle of dysplasia (Figure 8). As ventricular arrhythmias can occur anytime, affected patients are at risk for sudden death and timely diagnosis can help preventing arrhythmias and sudden death.

The most recent Task Force Criteria (TFC) for diagnosis of ARVC include global or regional structural and functional alterations, histopathologic tissue characterization, ECG abnormalities, arrhythmias, and family history. Echocardiography and CMR are the proposed imaging modalities for assessing structural and functional criteria as shown in Table 4. Echocardiographic abnormalities of the RV can be found in up to 62% of subjects. Dilatation of the RV outflow tract (RVOT) occurs in all positive subjects and global RV dysfunction is observed in more than two-thirds. Measurement of RVOT dimension in the parasternal long-axis or short-axis view should be included in each echocardiographic screening examination, as regional RV enlargement can be missed in the apical four-chamber view. Additional abnormalities consist of RV regional wall motion abnormalities, abnormal trabeculations, hyperreflective moderator band, and sacculations of the RV free
Tissue Doppler evaluation of myocardial velocities and 3D echocardiography may be helpful in the early non-invasive diagnosis of ARVC. Cardiac magnetic resonance adds information to echocardiography, as it enables visualization of subtle changes and of remote RV segments, such as the RV infero-posterior wall; RV volumes and function can be quantified (Table 5). Qualitative criteria such as segmental RV dilatation, presence of RV microaneurysms, or fatty infiltration have been removed from the revised TFC, as they have been shown to have low sensitivity and specificity.

Similar qualitative findings were observed in patients with benign RVOT arrhythmias in the absence of ARVC. Fatty infiltration can be found in normal heart as well.

In summary, each imaging modality should not be used in isolation as an independent marker. The combined use of echocardiography and CMR adds a powerful and accurate piece of information for the diagnosis of ARVC.

Table 4 Imaging task force criteria for diagnosing arrhythmogenic right ventricular cardiomyopathy

<table>
<thead>
<tr>
<th>Structural and functional criteria for ARVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major criteria</td>
</tr>
<tr>
<td>2D echo</td>
</tr>
<tr>
<td>CMR</td>
</tr>
<tr>
<td>Minor criteria</td>
</tr>
<tr>
<td>2D echo</td>
</tr>
<tr>
<td>CMR</td>
</tr>
</tbody>
</table>

Adapted from: Marcus et al. Proposed modification of the Task Force Criteria. RVOT, RV outflow tract.

Congenital heart disease

In CHD, the RV is frequently exposed to a chronic volume or pressure overload. This is the case in intracardiac shunts (atrial septal defect), anomalies of the pulmonary valve, and arteries (pulmonary atresia) and when the RV is pumping in the systemic circulation (transposition of the great arteries, single ventricle). Eventually, RV function is the main determinant of prognosis in these patients. Tetralogy of Fallot is the most common cyanotic CHD and a good example on how multimodality imaging of the RV can be used in CHD. Surgical repair of TOF provides excellent survival, but residual lesions are frequent and determine long-term morbidity and mortality. Echocardiography correctly identifies the presence of a residual ventricular septal defect, RVOT obstruction, and pulmonary regurgitation. In TOF patients, 2D echocardiographic measurements of the RV correlate only moderately with RV end-diastolic volume (RVEDV) as measured by CMR. The strongest relationship is found between RV end-diastolic area and RVEDV. Right ventricular systolic function can be estimated using % FAC, TAPSE, and tricuspid annular tissue Doppler velocities. Three-dimensional echocardiography is emerging and may be able to replace CMR-based volumetric measurements at least in patients with a good imaging window. Diastolic dysfunction in restrictive RV physiology is demonstrated, if a late diastolic (during atrial contraction) antegrade flow in the pulmonary artery is shown at Doppler echocardiography. Restrictive RV physiology has been found to have a protective role against progressive RV dilatation and to better predict exercise performance late after TOF repair, although this could only be observed in an adult cohort and is more controversial at younger age.

Chronic pulmonary valve regurgitation after TOF repair leads to progressive RV dilatation and dysfunction. Right ventricular volume measured by CMR has become an important parameter for trying to determine the ideal timing for pulmonary valve replacement. Oosterhof et al. found that a RVEDV < 160 mL/m² and a RV end-systolic volume < 82 mL/m² are predictive for normalization of RV dimensions after pulmonary valve replacement. In TOF patients, CMR is considered the ideal tool for serial assessment of RV volumes before and after pulmonary valve replacement.
More recently, regional myocardial RV function has been used for advanced functional assessment after TOF repair. Impaired longitudinal RV deformation indices have been described in the presence of pulmonary regurgitation by TDI and speckle tracking.\(^\text{51,127}\) Interestingly, progressive deterioration of RV longitudinal strain has been found in patients with stable EF, suggesting that myocardial strain could be a more sensitive parameter for detecting early ventricular dysfunction.\(^\text{51,128}\) Acute improvement of longitudinal RV and septal function could be demonstrated by speckle tracking after percutaneous pulmonary valve replacement.\(^\text{129}\)

Velocity-encoded CMR imaging of RV myocardium provides similar myocardial velocities and timing of velocities as TDI. Peak systolic velocities in the RV free wall and in the RVOT are reduced in TOF patients compared with normals.\(^\text{130}\)

The importance of the infundibulum has been investigated by looking at the segmental function in different RV regions, distinguishing between the RV inlet, the trabeculated apical part, and the RV outlet. Not surprisingly, EF is predominantly reduced in the outlet part where the surgical patch has been inserted.\(^\text{131}\)

This reduced myocardial deformation in the infundibular region correlates well with areas of late enhancement as well as with global EF.\(^\text{132}\)

Cardiac magnetic resonance provides important additional information, including calculation of pulmonary regurgitant volume and fraction,\(^\text{73}\) measurement of differential lung perfusion,\(^\text{133}\) and late-enhancement imaging.\(^\text{61}\) The presence of RV myocardial scars has been reported to have prognostic relevance in TOF patients, as it correlates with RV size, function, length of QRS complex at ECG, and may predict ventricular arrhythmias.\(^\text{134}\) Contrast-enhanced MR angiography or 3D SFFP provides exact anatomical evaluation of the RVOT and the pulmonary arteries and is helpful for planning reinterventions\(^\text{55}\) particularly for selecting patients for percutaneous pulmonary valve replacement.\(^\text{135}\)

Conclusions

The significance of RV function is being increasingly recognized in the acute phase and during follow-up as prognostic factor in

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Summary of the right ventricular parameters that can be assessed by specific and/or combined imaging modalities in various diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurements</td>
<td>Imaging modality</td>
</tr>
<tr>
<td>RV anatomy</td>
<td>Echocardiography</td>
</tr>
<tr>
<td></td>
<td>CMR (SSFp)</td>
</tr>
<tr>
<td></td>
<td>MDCT</td>
</tr>
<tr>
<td>RV dimensions</td>
<td>2D echocardiography</td>
</tr>
<tr>
<td></td>
<td>CMR (SSFp, volumnetry)</td>
</tr>
<tr>
<td></td>
<td>MDCT</td>
</tr>
<tr>
<td>Pulmonary valve</td>
<td>Echocardiography</td>
</tr>
<tr>
<td></td>
<td>CMR (phase contrast imaging for regurgitation quantification)</td>
</tr>
<tr>
<td>Pulmonary arteries</td>
<td>CMR (angiography/3D SSFP)</td>
</tr>
<tr>
<td></td>
<td>MDCT</td>
</tr>
<tr>
<td></td>
<td>Echocardiography (proximal segments)</td>
</tr>
<tr>
<td>Tricuspid valve</td>
<td>Echocardiography</td>
</tr>
<tr>
<td></td>
<td>3D echocardiography</td>
</tr>
<tr>
<td>RV volumes</td>
<td>CMR (SSFp)</td>
</tr>
<tr>
<td>RV ejection fraction</td>
<td>Echocardiography (2D/3D)</td>
</tr>
<tr>
<td></td>
<td>Gated blood-pool SPECT</td>
</tr>
<tr>
<td></td>
<td>MDCT</td>
</tr>
<tr>
<td>Regional RV function</td>
<td>Tissue Doppler imaging</td>
</tr>
<tr>
<td>Myocardial velocities</td>
<td>Speckle tracking</td>
</tr>
<tr>
<td>Strain/strain rate (investigational)</td>
<td>CMR (tagging, velocity encoded sequences)</td>
</tr>
<tr>
<td>RV ischaemia</td>
<td>CMR (late enhancement, oedema)</td>
</tr>
<tr>
<td></td>
<td>Echocardiography (wall motion)</td>
</tr>
<tr>
<td></td>
<td>SPECT (perfusion)</td>
</tr>
<tr>
<td>RV scars/fibrosis</td>
<td>CMR (late enhancement)</td>
</tr>
<tr>
<td></td>
<td>SPECT</td>
</tr>
<tr>
<td>Coronary arteries</td>
<td>MDCT</td>
</tr>
<tr>
<td></td>
<td>PET/CT</td>
</tr>
</tbody>
</table>

The imaging modalities are represented in the order they should be performed for the specific wanted measurement. ARVC, arrhythmogenic right ventricular cardiomyopathy; CHD, congenital heart disease; CMR, cardiovascular magnetic resonance; MDCT, multidetector computed tomography; RVOT, right ventricular outflow tract; PAH, pulmonary arterial hypertension; PET, positron emission tomography; SPECT, single-photon electron-computed tomography; SSFP, steady-state free precession sequence.
several cardiac diseases. Echocardiography and CMR are the imaging modalities of choice for imaging the right heart. In most patients, both techniques provide complementary information and can be used in combination for almost complete evaluation of the RV. Multidetector computed tomography and nuclear imaging techniques are valuable alternative modalities and add important additional information in selected cases, particularly in RV ischaemic disease. Emerging new technologies such as 3D echocardiography, TDI, speckle tracking as well as new CMR sequences are enlarging the spectrum of the pathophysiologic information obtained, but are still confined to investigational use and need further clinical validation. Table 5 summarizes the use of all these imaging modalities for assessing the different RV parameters in various diseases, and may serve as guide for multimodality imaging.

Acknowledgements

We thank Prof. C. Attenhofer Jost for his critical appraisal of the manuscript.

Conflict of interest: none declared.

References

Downloaded from https://academic.oup.com/eurheartj/article/33/8/949/446194 by guest on 26 March 2022

79. Lin FY, Devereux RB, Roman MJ, Meng J, Jow VM, Jacobs A, Weinsaft JW, Shaw LJ, Berman DS, Callister TQ, Min JK. Cardiac chamber volumes, function, and mass as determined by 64-multidetector row computed tomography: mean values among healthy adults free of hypertension and obesity. JACC Cardiovascular Imaging 2008;1:782–786.

Downloaded from https://academic.oup.com/eurheartj/article/33/8/949/446194 by guest on 26 March 2022