Arterial elongation and tortuosity leads to detection of a de novo TGFBR2 mutation in a young patient with complex aortic pathology

Koen M. van de Luijtgaarden, Frederico Bastos Gonçalves, Danielle Majoor-Krakauer, and Hence J.M. Verhagen

In a 47-year-old muscular-build male admitted with acute abdominal pain imaging revealed a Stanford type-B aortic dissection associated with a pre-existing large aortoiliac aneurysm (Panels A and B) and marked iliac-artery elongation and tortuosity (Panels C and D, arrows). The patient underwent uneventful elective open repair of the aortoiliac aneurysm. The marked aortic elongation and tortuosity at a young age in this patient prompted referral for genetic counselling after surgery. No characteristic facial or musculoskeletal signs of Loeys-Dietz or Marfan syndrome were present and there was no family history of vascular disease. Nevertheless, DNA analysis showed a ‘de-novo’ TGFBR2 mutation.

Arterial elongation and tortuosity is a main feature in patients with characteristic facial and musculoskeletal appearance of the TGF-β pathway-related genetic aneurysm syndromes. Therefore, our observation expands the phenotypic spectrum of TGF-β pathway-related pathology to patients with severe abdominal and iliac arterial disease without major dysmorphicological characteristics.

We demonstrate the importance of genetic testing in younger patients presenting with complex aortic pathology with marked arterial elongation and tortuosity, even in the absence of characteristic phenotypic features of a genetic aneurysm syndrome or a family history of aortic aneurysms. Correct genetic diagnosis of TGFBR2-related aortic pathology is important for clinical management of the patients and for genetic counselling of the family. Since TGFBR2-linked genetic aneurysms have an autosomal dominant inheritance, relatives at risk should be offered genetic counselling and pre-symptomatic testing for TGFBR2 mutations. In this way, carriers of the TGFBR2 mutation can benefit from screening and timely intervention.

This work was supported by an unrestricted grant from the ‘Lijf & Leven’ Foundation, Rotterdam, The Netherlands.