Is cardiac magnetic resonance imaging causing DNA damage?

Juhani Knuuti1*, Antti Saraste1,2, Marko Kallio3, and Heikki Minn4

1Turku PET Centre, Turku University Hospital and University of Turku, Kinarnylynkatu 4–8, 20520 Turku, Finland; 2Heart Center, Turku University Hospital, Turku, Finland; 3VTT Biotechnology for Health and Wellbeing, Turku, Finland; and 4Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland

Online publish-ahead-of-print 2 July 2013

This editorial was guest edited by Prof. Jeroen Bax, Leiden, The Netherlands.

This editorial refers to ‘Impact of cardiac magnetic resonance imaging on human lymphocyte DNA integrity,’† by M. Fiechter et al., on page 2340

Cardiac imaging is increasingly used to detect heart diseases and to guide therapy. Along with the increased use of cardiac imaging at clinics there is increased attention to the potential risks related to the methods used. Currently imaging tests using ultrasound or magnetic fields have been regarded safer alternatives compared with the tests utilizing ionizing radiation such as X-rays, computed tomography (CT), and nuclear imaging.1

However, various sources of risks related to, for example, exercise testing, pharmacological stressors, contrast agents, the imaging procedures themselves, invasive procedures, and cumulative ionizing radiation should all be taken into account collectively and ultimately weighed against the risks related to undetected disease or delayed diagnosis.

Magnetic resonance (MR) imaging relies on three different types of low-frequency electromagnetic waves: a static magnetic field, radiofrequency (RF) pulses, and gradient magnetic fields. Potential risks associated with MR may derive from the effects of each component on biological tissues and mainly on ferromagnetic objects. The latter is a well-known limitation of MR that can be avoided by appropriate patient selection, i.e. exclusion of patients with any metal object in their body. A strong static magnetic field as such is unlikely to cause significant adverse biological effects, although sporadic and their body. A strong static magnetic field as such is unlikely to cause significant adverse biological effects, although sporadic and transient sensations of nausea and dizziness have been reported.2

However, various sources of risks related to, for example, exercise testing, pharmacological stressors, contrast agents, the imaging procedures themselves, invasive procedures, and cumulative ionizing radiation should all be taken into account collectively and ultimately weighed against the risks related to undetected disease or delayed diagnosis.

Magnetic resonance (MR) imaging relies on three different types of low-frequency electromagnetic waves: a static magnetic field, radiofrequency (RF) pulses, and gradient magnetic fields. Potential risks associated with MR may derive from the effects of each component on biological tissues and mainly on ferromagnetic objects. The latter is a well-known limitation of MR that can be avoided by appropriate patient selection, i.e. exclusion of patients with any metal object in their body. A strong static magnetic field as such is unlikely to cause significant adverse biological effects, although sporadic and transient sensations of nausea and dizziness have been reported.2

The RF energy delivered to the body may cause heating of tissues.2 The amount of RF energy delivered is defined as the specific absorption rate (SAR). To avoid significant heating, clinical scanners are set to operate within defined SAR ranges. A gradient magnetic field can stimulate nerves and muscles, occasionally causing discomfort,3 but current MR systems typically operate below nerve stimulation levels. However, cardiac MR imaging requires some of the strongest and fastest switching electromagnetic gradients available in MR, exposing the patients to the highest accepted energy levels.4,5

DNA double-strand breaks (DSBs) in vivo have been used as a marker of biological damage and genotoxic effects induced by medical procedures especially in studying the effects of ionizing radiation. There are several approaches to measure the induction and repair of DSBs. A number of methods such as the Comet assay,6,7 and measurement of gamma-H2AX phosphorylation (pH2AX)8,9 allow detection of low levels of DNA damage. The classical Comet assay is a simple and sensitive gel electrophoresis-based technique that can be used, with modifications, to measure DNA single-strand breaks (SSBs) and DSBs, as well as cross-links and apoptotic nuclei in individual eukaryotic cells. The pH2AX assay is methodologically more versatile as the phosphorylation event occurring on DNA can be detected with the use of immunofluorescence microscopy, flow cytometry, and western blotting. Induction of pH2AX occurs within seconds, and maximal accumulation is reached ~ 30 min after irradiation, followed by decay (epitope dephosphorylation), depending on the success of the repair processes.8 Both methods are also suitable for assessing the level of induced DNA damage in peripheral blood cells, but the high linearity of pH2AX signals with the radiation dose makes this biomarker the method of choice for indicating the exposure and monitoring the repair. No significant differences in the amount of pH2AX foci between lymphocyte subsets have been detected. However, the observed large interindividual variation in vitro10 and in vivo limits the usefulness of the pH2AX assay for radiation biodosimetry. Moreover, it should be noted that both methods require the use of specific antibodies against DNA DSBs.

Fiechter et al.11 have now investigated the impact of cardiac MR on lymphocyte DNA. They analysed DSBs in blood lymphocytes before and after routine 1.5T cardiac MR examination using...
immunofluorescence microscopy and flow cytometric analysis for measurement of pH2AX signals. They found a significant increase in median numbers of DSBs in lymphocytes after cardiac MR examination. The authors concluded that cardiac MR should be used with caution, and restrictions may apply similar to those of other X-ray-based imaging techniques in order to avoid unnecessary damage of DNA integrity with a potential carcinogenic effect.

The results may sound surprising but are actually not completely new. In previous studies, in vitro and in vivo DNA damage in lymphocytes after cardiac MR has been demonstrated. Interestingly, previous studies with low-dose coronary CT angiography, nuclear imaging, and invasive X-ray angiography have documented DSBs with levels quite comparable with those detected after cardiac MR by Fiechter et al., while the values have been somewhat higher after CT angiography performed with a higher radiation dose (Table 1). In addition, the studies have demonstrated a strong relationship between the amount of DSBs and the amount of ionizing irradiation in vitro. Based on serial measurements, repair of DSBs seems to be rapid as their number returns close to baseline in a few hours, but very limited data are available for the longer term existence of DSBs after scans. In the study by Simi et al., DNA damage was detected up to 24 h after cardiac MR.

The long-term biological and clinical significance of DNA DSBs induced by MRI remains unknown. Mammalian cells respond rapidly to DNA damage caused by external agents such as ionizing radiation by rapidly activating the molecular machinery which aims at maintaining genomic integrity and thus preventing carcinogenic mutations. Repair of DSBs involves a complex series of finely orchestrated protein interactions which reverse the changes in the nucleotides in an extremely efficient way both qualitatively and quantitatively. The main mechanisms of DSB repair include non-homologous end-joining and homologous recombination. While they sometimes fail to restore genomic stability, the key question in the case of permanent DNA damage is the likelihood of a hazardous effect on the host. Of note, the risk from radiation-induced carcinogenesis is considered as a stochastic event. In other words, even an extremely low level of damage may result in a harmful effect since no threshold for mutational changes exists.

Some limitations in the study of Fiechter et al. need to be taken into account. The study population was small and the measured increase in DSBs relatively minute. Although the results are in agreement with an earlier comparable study, it is important to confirm the findings in a larger population. Fiechter et al. measured only one time point at the end of the MR scan. Temporal data about the dynamics of the DSB repair are needed. The effect of MR field strength (1.5T vs. 3T vs. 7T) needs to be studied, as well as the role of contrast agents which may enhance the biological effects of magnetic fields. It would also be important to determine if similar findings can be detected after MR imaging of other tissues such as the brain and abdominal organs. It is also pivotal to collect more data about DSBs for comparison of different imaging modalities including ultrasound or even sham imaging to better understand the usability of DSBs as a biomarker of cellular stress after various clinical procedures.

Assuming that DNA damage indeed occurs after cardiac MR imaging, what does that mean clinically? Unfortunately that information is not available, and will probably be very difficult to acquire. In the case of ionizing radiation, only extrapolation from larger radiation doses in population cohorts (e.g. atomic bomb survivors) has been able to document the increased risk of cancer after low-dose radiation. The Food and Drug Administration (FDA) has estimated that after 10 mSv of ionizing radiation, the excess incidence of fatal cancer would be 0.05% and, since the current population incidence of cancer is high (one in three women and one in two men in Western countries will develop cancer in his or her lifetime), the minute increase in cancer due to radiation is extremely difficult to detect. Thus, also in the case of cardiac MR one could anticipate that the potential risk is too low to be confirmed in clinical population studies. The cellular mechanism of how cardiac MR induces DNA damage is not known and may be different from that of radiation. The distribution of exposure locally and to the whole body is also different. Due to numerous open issues, it is obvious that further larger

<table>
<thead>
<tr>
<th>Early measurements</th>
<th>Later measurements</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSB foci/lymphocyte</td>
<td>DSB foci/lymphocyte</td>
<td>Time of</td>
</tr>
<tr>
<td>Measurement</td>
<td>Measurement</td>
<td>measurement</td>
</tr>
<tr>
<td>[18F]FDG injection (5 mSv)</td>
<td>0.11</td>
<td>30 min post-injection</td>
</tr>
<tr>
<td>CTA (~2 mSv)</td>
<td>0.04</td>
<td>30 min post scan</td>
</tr>
<tr>
<td>CTA (~8 mSv)</td>
<td>0.24</td>
<td>30 min post-scan</td>
</tr>
<tr>
<td>CTA (~17 mSv)</td>
<td>0.39</td>
<td>30 min post-scan</td>
</tr>
<tr>
<td>Invasive angiography</td>
<td>0.13</td>
<td>15 min post-procedure</td>
</tr>
<tr>
<td>1.5T CMR</td>
<td>0.12</td>
<td>At the end of the scan</td>
</tr>
</tbody>
</table>

*Baseline level of DSBs is ~0.06–0.08 DSB foci/lymphocyte.*

*Median of different non-cardiac diagnostic and interventional procedures.*
studies are warranted before any restrictions on the use of cardiac
MR should be imposed.

Funding
The Academy of Finland Centre of Excellence in Molecular Imaging in
Cardiovascular and Metabolic Research, Helsinki, Finland and Finnish
Foundation for Cardiovascular Research.

Conflict of interest: J.K. received a grant from CardiRAd and fees
from Lantheus. All other authors have no conflicts to declare.

References
573–578.
2. Shellock FG. Radiofrequency energy-induced heating during MR procedures: a
3. Schaefer DJ, Bourland JD, Nyenhuis JA. Review of patient safety in time-varying gra-
Gabbriellini S, Landini L, Lombardi M. Is the genotoxic effect of magnetic resonance
negligible? Low persistence of micronucleus frequency in lymphocytes of individuals
Lobrich M, Uder M. DNA double-strand breaks and their repair in blood lympho-
cytes of patients undergoing angiographic procedures. Invest Radiol 2009;44:
440–446.
6. Giovannelli L, Pitozzi V, Riolo S, Dolara P. Measurement of DNA breaks and oxida-
tive damage in polymorphonuclear and mononuclear white blood cells: a novel ap-
7. Olive PL, Banáth JP. The comet assay: a method to measure DNA damage in individ-
8. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded
273:5858–5868.
9. Mah Lj, El-Osta A, Karagiannis TC. GammaH2AX: a sensitive molecular marker of
10. Andriesvl A, Wilkins R.C. The response of gamma-H2AX in human lymphocytes
and lymphocytes subsets measured in whole blood cultures Int J Radiat Biol 2009;
85:369–376.
11. Fiechter M, Stehli J, Fuchs TA, Dognoud S, Gaemperli O, Kaufmann PA. Impact of
cardiac magnetic resonance imaging on human lymphocyte DNA integrity. Eur Heart J 2013;34:
2340–2345.
Lobrich M, Uder M. DNA double-strand breaks and their repair in blood lympho-
cytes of patients undergoing angiographic procedures. Invest Radiol 2009;44:
440–446.
DNA double-strand breaks in blood lymphocytes during coronary CT angiography
using high-pitch spiral data acquisition with prospective ECG-triggering. Invest Radiol
medium-enhanced radiation damage caused by CT examinations. Radiology 2009;
253:706–714.
15. May MS, Brand M, Wüest W, Anders K, Kuwert T, Prante O, Schmidt D, Maschauer S,
Semelka RC, Uder M, Kuefner MA. Induction and repair of DNA double-strand
breaks in blood lymphocytes of patients undergoing (18)F-FDG PET/CT examina-
16. Thompson L.H. Recognition, signalling, and repair of DNA double-strand breaks pro-
duced by ionizing radiation in mammalian cells: the molecular choreography. Mutat
17. Lobrich M, Jeggo PA. The impact of a negligent G2/M checkpoint on genomic instabil-
18. US Food and Drug Administration. Whole body scanning using computed tomog-