Imaging

Stress echo applications beyond coronary artery disease

Eugenio Picano1* and Patricia A. Pellikka2

1CNR, Institute of Clinical Physiology, Via Moruzzi, 1, Pisa 56124, Italy; and 2Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN, USA

Stress echocardiography is an established method for the diagnosis and prognostic stratification of coronary artery disease. In the last few years, the tremendous technological and conceptual versatility of this technique has been increasingly applied in challenging diagnostic fields. Today, in the echocardiography laboratory we can detect not only ischaemia from coronary artery stenosis, but can also recognize abnormalities of the coronary microvessels, myocardium, heart valves, pulmonary circulation, alveolar-capillary barrier, and right ventricle. Therefore, we evaluate coronary arteries as well as coronary microvascular disease (associated with diabetes and hypertension), suspected or overt dilated cardiomyopathy, systolic and diastolic heart failure, hypertrophic cardiomyopathy, athletes’ hearts, valvular heart disease, congenital heart disease, incipient or overt pulmonary hypertension, and heart transplant patients for early detection of chronic or acute rejection as well as potential donors for better selection of suitable donor hearts. From a stress echo era with a one-fits-all approach (wall motion by 2D-echo in the patient with known or suspected coronary artery disease) now we have moved on to an omnivorous, next-generation laboratory employing a variety of technologies (from M-Mode to 2D and pulsed, continuous and colour Doppler, to lung ultrasound and real-time 3D echo, 2D speckle tracking and myocardial contrast echo) on patients covering the entire spectrum of severity (from elite athletes to patients with end-stage heart failure) and ages (from children with congenital heart disease to the elderly with low-flow, low-gradient aortic stenosis). For each patient, we can tailor a dedicated stress protocol with a specific method to address a particular diagnostic question. Provided that the acoustic window is acceptable and the necessary expertise available, stress echocardiography is useful and convenient in many situations, from valvular to congenital heart disease, and whenever there is a mismatch between symptoms during stress and findings at rest. Increasing societal concern regarding cost, environment and radiation risks of medical imaging will lead to a preferential application of ultrasound over competing techniques, due to its unsurpassed versatility, portability, absence of radiation, and low cost.

Keywords Cardiomyopathy • Echocardiography • Heart failure • Stress • Valvular heart disease

Introduction

Stress echocardiography (SE) provides a dynamic evaluation of myocardial structure and function under conditions of physiological or pharmacological stress. Guidelines recommend SE as a primary tool for evaluating patients with established or suspected coronary artery disease (CAD).1,2 However, the echocardiographic images obtained during conventional SE provide far more information. The baseline transthoracic echocardiogram (TTE) performed at the time of SE permits recognition of many causes of cardiac symptoms in addition to ischaemic heart disease, including dilated cardiomyopathy (DC) or hypertrophic cardiomyopathy (HCM), pulmonary hypertension (PH), and valvular heart disease (VHD). As with CAD, also in these diseases, the application of exercise or pharmacological stress under controlled conditions can unmask structural defects which—although occult in the resting or static state—may occur under real-life loading conditions, and lead to dysfunction detected by echocardiography.3

Nowadays, in the SE laboratory we can assess a variety of different parameters:4,5 coronary flow and ventricular function (Figure 1); valvular gradients and regurgitant flows (Figure 2); and left and right heart haemodynamics including pulmonary artery systolic pressure (PASP), ventricular volumes, and extravascular lung water (Figure 3). From a practical viewpoint, it is not feasible to do everything in all patients, since there is so little time during stress and there are so many things to see.6 Therefore, the variables of potential diagnostic interest should be strategically tailored and prioritized to the individual patient based on the perceived incremental value of each (Table 1). Exercise is the test of choice for most applications—and bicycle

* Corresponding author. Tel: +39 0503152398, Fax: +39 0503152374, Email: picano@ifc.cnr.it
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2013. For permissions please email: journals.permissions@oup.com
semi-supine exercise is technically easier than upright bicycle or post-treadmill. Vasodilation is the preferred modality for the evaluation of coronary flow reserve (CFR) and dobutamine for contractile reserve. A flexible use of exercise, vasodilator, and dobutamine stress maximizes versatility, avoids specific contraindications of each, and makes it possible to tailor the appropriate stress to the individual patient.

Stress echocardiography is relatively simple and widely available, but training recommendations should be followed. In general, many parameters used in stress echo applications beyond CAD can be more difficult to acquire but are easier to measure and more amenable to quantification than regional wall motion assessment; therefore, these applications may be less dependent upon the subjectivity of interpretation and operator experience.

Stress echo in microvascular disease

The typical behaviour of microvascular disease during stress testing is the frequent induction of chest pain, ST-segment depression, and nuclear perfusion abnormalities without regional or global wall motion changes (Figure 4), in striking contrast to the ‘classic’ ischaemic cascade found in CAD patients, where regional wall motion abnormalities are an early and sensitive event. In the ‘alternative’ ischaemic cascade of microvascular disease, the reduction of CFR identifies a group with worse long-term prognosis (‘wolves in sheep’s clothing’) in different patient subsets including syndrome X, hypertensives, diabetics, non-ischaemic DC, HCM, and severe rejection of a transplanted heart. Vasodilator stress is performed with flow velocity measurements in the mid-distal left anterior descending artery interrogated with PW Doppler. Coronary microvascular function can also be assessed with myocardial contrast echocardiography (MCE). The evaluation of CFR is recommended in European Association of Echocardiography (EAE) recommendations, since it ‘provides critical prognostic value when added to conventional wall motion analysis’.

Non-ischaemic dilated cardiomyopathy

In early stages of heart failure, when resting ejection fraction is still normal or nearly normal, a blunted cardiac contractile reserve can identify incipient, pre-clinical myocardial damage.
SE is also useful at a more advanced, overt stage of dilated cardiomyopathy, in patients with depressed ejection fraction in whom the presence of a significant contractile reserve is associated with better prognosis. Dobutamine SE may be used to recognize whether non-contracting myocardium is viable.17

From systolic blood pressure and end-systolic volume, left ventricle (LV) elastance can be calculated, and provides an index of LV contractility, theoretically independent of changes in loading conditions and prognostically useful.20 – 22

Hypertrophic cardiomyopathy

ACCF/AHA guidelines for the diagnosis and treatment of HCM assign exercise echocardiography a class IIa recommendation for the detection and quantification of exercise-induced dynamic LV outflow tract (LVOT) obstruction in patients who have a resting peak instantaneous gradient of 50 mmHg or less (level of evidence B). Marked gradients ≥ 50 mmHg, either at rest or with provocation, represent the conventional threshold for surgical or percutaneous intervention if symptoms cannot be controlled with medication,23 since they can be possibly responsible for symptoms24,25 and for development of stress-induced wall motion abnormalities in the absence of CAD.26 Additionally, SE may be used to identify transient regional wall motion abnormality due to functionally significant epicardial CAD,27 and reduction in CFR (in absence of regional wall motion abnormalities) due to microvascular disease.15,28

Valvular heart disease

Evidence accumulated over the last 5 years has led to the incorporation of SE in the guidelines of the ACCF/AHA2,29 and ESC.30 In the recent position paper of ESC on VHD and in the ACCF/ASE Appropriate Use Criteria for Echocardiography, SE has a definite role in the heart valve clinic, and is especially indicated when symptoms do not match the severity of the VHD at rest, or in the asymptomatic patient with evidence of severe valvular disease by echocardiography at rest2,31: Tab 1.

Aortic stenosis

According to the ESC 2012 guidelines, low dose dobutamine echocardiography may be helpful in patients with low flow, low gradient severe AS with reduced EF, to distinguish truly severe AS from pseudo-severe AS. Truly severe AS shows only small changes in valve area with increasing flow rate, but a significant increase in gradients, whereas pseudo-severe AS shows a marked increase in valve area but only minor changes in gradients. Aortic valve replacement should be considered in symptomatic patients with low flow, low gradient with reduced EF, and evidence of contractile (or flow)
reserve (class of recommendation IIa, level of evidence C), and may be considered in those without flow reserve (class IIb, evidence C). Mitral stenosis

SE is especially valuable when symptoms and Doppler findings are discordant (class I, level of evidence C). SE is recommended in asymptomatic patients with resting echocardiography that demonstrate severe mitral stenosis and for symptomatic patients with resting evidence of moderate mitral stenosis. The usually adopted cut-off values during exercise, proposed by the ACCF/AHA guidelines, are a PASP > 60 mmHg measured from the CW Doppler recordings of tricuspid regurgitation or mean transmitral pressure gradient > 15 mmHg at peak stress. Above these threshold values, valvuloplasty or valve replacement is recommended.

Mitral insufficiency

The ACCF/AHA and ESC guidelines suggest that mitral valve intervention may be considered in asymptomatic patients with severe primary MR and normal LV function, high likelihood of durable repair, and low surgical risk, who have PASP ≥ 60 mmHg at exercise (class of IIb, evidence C). Exercise echocardiography is also useful in assessment of the symptomatic patient in whom resting echocardiography shows only moderate mitral insufficiency.

Aortic insufficiency

With the sparse data supporting the incremental value of SE, it is not recommended for routine clinical use by either EAE or ACC/AHA guidelines, although is still considered appropriate (score = 7) for ACCF/AHA 2011 appropriate use criteria for echocardiography.

Pulmonary hypertension

By TTE, normal values are defined by PASP of less than 35 mmHg at rest. Pulmonary artery systolic pressure at peak semi-supine exercise can reach values ≥ 60 mmHg in many healthy individuals older than 60 and in young well-trained athletes. Of the group with exercise-induced PH, only a minority will develop resting PH within a 3-year period. The current European
<table>
<thead>
<tr>
<th>Table 1</th>
<th>Applications of stress echo in clinical practice, beyond coronary artery disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AU Source (ref) Stress of choice</td>
</tr>
<tr>
<td>Microvascular disease</td>
<td></td>
</tr>
<tr>
<td>Coronary flow reserve</td>
<td>√ EAE 2009<sup>5</sup></td>
</tr>
<tr>
<td>Dilated cardiomyopathy</td>
<td></td>
</tr>
<tr>
<td>Contractile reserve</td>
<td>√ ESC 2012<sup>17</sup>, EAE 2009<sup>9</sup> Dob (ex, dip)</td>
</tr>
<tr>
<td>Symptomatic HCM</td>
<td></td>
</tr>
<tr>
<td>Resting peak gradient < 50 mmHg</td>
<td>√ ACCF/AHA 2011<sup>23</sup></td>
</tr>
<tr>
<td>Asymptomatic VHD</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>√ ACCF/AHA 2011<sup>2</sup></td>
</tr>
<tr>
<td>Severe MS</td>
<td>√ ACCF/AHA 2011<sup>2</sup></td>
</tr>
<tr>
<td>Severe AR</td>
<td>√ ACCF/AHA 2011<sup>2</sup></td>
</tr>
<tr>
<td>Severe AS, normal EF</td>
<td>√ ACCF/AHA 2011<sup>2</sup></td>
</tr>
<tr>
<td>Moderate AS, AR, MR, MS</td>
<td>√ ACCF/AHA 2011<sup>2</sup></td>
</tr>
<tr>
<td>Mild MS, MR, AS, AR</td>
<td>√ ACCF/AHA 2011<sup>2</sup></td>
</tr>
<tr>
<td>Symptomatic VHD</td>
<td></td>
</tr>
<tr>
<td>Moderate MS</td>
<td>√ ACCF/AHA 2011<sup>2</sup></td>
</tr>
<tr>
<td>Low flow, low gradient AS</td>
<td>√ ACCF/AHA 2011<sup>2</sup></td>
</tr>
<tr>
<td>Moderate MR</td>
<td>√ ACCF/AHA 2011<sup>2</sup></td>
</tr>
<tr>
<td>Mild MS, MR</td>
<td>√ ACCF/AHA 2011<sup>2</sup></td>
</tr>
<tr>
<td>Severe AS, MS, MR</td>
<td>√ ACCF/AHA 2011<sup>2</sup></td>
</tr>
<tr>
<td>Pulmonary hypertension</td>
<td></td>
</tr>
<tr>
<td>Suspected PAH in normal resting TTE</td>
<td>√ ACCF/AHA 2011<sup>2</sup></td>
</tr>
<tr>
<td>Re-evaluation of exercise-induced PH on therapy</td>
<td>√ ACCF/AHA 2011<sup>2</sup></td>
</tr>
<tr>
<td>Proven resting PH</td>
<td>√ ACCF/AHA 2011<sup>2</sup></td>
</tr>
</tbody>
</table>

Continued
Respiratory Society/ESC guidelines for the diagnosis of pulmonary arterial hypertension (PAH) do not specify an indication for performing SE, because of limited information regarding standard values for PASP during exercise and the lack of prospective prognostic data, in spite of SE’s acknowledged great potential for detecting the pre-clinical stages of disease via the exercise-induced increase in PASP disproportionate to the increase in cardiac output.

Diastolic stress echocardiography

In presence of clinical symptoms and/or signs, mainly dyspnoea, and normal or only mildly reduced LV systolic function with normal LV volumes, the diagnosis of heart failure with preserved ejection fraction (HF-PEF) can be achieved in the presence of E/e' ratio >15 and excluded with E/e' ratio <8. However, it is not infrequent for the patient to fall within a ‘grey zone’ of indeterminate values. These patients are the main clinical target of diastolic SE. The recommended stress is exercise, with semi-supine bicycle. In patients with diastolic heart failure, the E/e' ratio (a proxy of LV filling pressure) increases >15 with exercise and PASP rises. With acute systolic or diastolic heart failure during stress, lung ultrasound may show B-lines or ultrasound lung comets, which is a simple, direct, semi-quantitative sign of extravascular lung water accumulation. According to 2012 ESC guidelines on heart failure, diastolic stress testing is an emerging procedure for identifying HF-PEF in patients with HF symptoms during physical activity, normal EF, and inconclusive diastolic function at rest.

Stress echocardiography in congenital heart disease

SE is increasingly used for the detection of coronary artery involvement in Kawasaki Disease and transplant CAD. Outside CAD, emerging SE applications focus mainly on the assessment of contractile reserve of the systemic morphological right ventricle, in aortic coarctation and isolated subaortic stenosis. As recommended by a 2006 Statement of AHA, paediatric testing during stress should remain an integral part of paediatric cardiology training.

Stress echocardiography in heart transplant

Recent guidelines recognize that SE ‘may be useful for the detection of cardiac allograft vasculopathy in heart transplant recipients unable to undergo invasive evaluation’. SE appears promising in the selection of donor hearts for cardiac transplantation.

Stress echocardiography in athletes and extreme physiology

In athletes with a positive pre-participation cardiovascular screening result for sports practice according to the ESC guidelines (i.e. exercise-induced symptoms and/or ischaemia-like electrocardiographic changes), a significant LVOT gradient at rest (>30 mmHg) or after exercise is a sign of impaired coronary blood flow.
exercise (>50 mmHg) may develop especially with patients in orthostatism in the absence of wall motion abnormalities, outlining a functional (and potentially treatable with beta-blockers) cause of angina and/or syncope.

The exaggerated PASP response in individuals susceptible to high-altitude pulmonary oedema is an increase in PASP >40 mmHg with 2h-hypoxia (with oxygen saturation of 80%, corresponding to an altitude of 4500 m) alone and >50 mmHg for hypoxia and supine...
exercise - with the caveats already described in the previous section on PH.47

Pitfalls and limitations
The evaluation of contractile reserve with WMSI is subjective and operator-dependent. The Doppler assessment of CFR is based upon a velocity ratio, which is a good surrogate of flow only when no significant change in epicardial artery diameter occurs during stress, and is limited by previous caffeine intake, which interferes with vasodilation induced by adenosine accumulation. Myocardial contrast echocardiography limitations include the need for an i.v. line and additional cost.32 Many indications are based on a level C weight of evidence and the proposed cut-off values remain consensus-driven rather than supported by outcome-based evidence.32

For the assessment of diastolic function, the E'/e' ratio can be unreliable, even at rest, in the presence of annular calcification, mitral valve disease, regional LV dysfunction, or atrial fibrillation.48 In diastolic stress, E'/e' has a limited correlation with invasively detected changes in LV filling pressures.49 The Doppler assessment of PASP has imperfect agreement with the gold standard of right heart catheterization, remains unreliable in 15% of patients with inadequate TR jet and is unreliable in massive TR. During stress, we still lack accepted cut-off values between normal and abnormal responses. Pulmonary artery systolic pressure values are linearly dependent on cardiac output, and multipoint pulmonary artery pressure-flow relationship should also be integrated with the evaluation of pulmonary vascular resistances. Post-exercise measurements are unreliable because of rapid return to baseline of pulmonary haemodynamics.34,35

Future perspectives
The clinical use of SE beyond CAD should harmonize with the standards of appropriateness of our imaging studies, therefore, clearly separating research-oriented, promising novel applications of the technique from established use of proven clinical value (Table 1). Evolving technologies will continue to advance the field, including 2D strain rate for objective assessment of regional and global, right and left, systolic and diastolic ventricular function; MCE; and 3D echocardiography for rapid acquisition of an unlimited number of planes, with reproducible volume measurements to assess ventricular arterial coupling.20 All have great potential but there is still insufficient evidence for general recommendations.19 Prospective large-scale and randomized (SE-guided vs. standard) outcome studies are needed to support more evidence-based treatment strategies. Increasing social concern regarding cost, environment and radiation risks of medical imaging,50 will lead to a preferential application of ultrasound over competing techniques due to its wide availability, portability, relatively low cost, versatility, and absence of radiation.

Funding
E.P. received research funding through the CNR-Institute of Clinical Physiology from Sorin, Boehringer-Ingelheim, Medtronic, Malesci. He is the inventor of a pacemaker licensed to Medtronic.

Conflict of interest: none declared.

References

Downloaded from https://academic.oup.com/eurheartj/article-abstract/35/16/1033/474340 by guest on 05 December 2018

