In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the Atheroremo-IVUS study

Jin M. Cheng†, Hector M. Garcia-Garcia†*, Sanneke P.M. de Boer, Isabella Kardys, Jung Ho Heo, K. Martijn Akkerhuis, Rohit M. Oemrawsingh, Ron T. van Domburg, Jurgen Ligthart, Karen T. Witberg, Evelyn Regar, Patrick W. Serruys, Robert-Jan van Geuns, and Eric Boersma

Department of Cardiology, Erasmus MC, Rotterdam, Room B6-381, PO Box 2040, 3000, the Netherlands

Received 31 July 2013; revised 27 September 2013; accepted 27 October 2013; online publish-ahead-of-print 19 November 2013

Aims
Acute coronary syndromes (ACS) are mostly caused by plaque rupture. This study aims to investigate the prognostic value of in vivo detection of high-risk coronary plaques by intravascular ultrasound (IVUS) in patients undergoing coronary angiography.

Methods and results
Between November 2008 and January 2011, IVUS of a non-culprit coronary artery was performed in 581 patients who underwent coronary angiography for ACS (n = 318) or stable angina (n = 263). Primary endpoint was major adverse cardiac events (MACEs) defined as mortality, ACS, or unplanned coronary revascularization. Culprit lesion-related events were not counted. Cumulative Kaplan–Meier incidence of 1-year MACE was 7.8%. The presence of IVUS virtual histology-derived thin-cap fibroatheroma (TCFA) lesions (present 10.8% vs. absent 5.6%; adjusted HR: 1.98, 95% CI: 1.09–3.60; P = 0.026) and lesions with a plaque burden of ≥70% (present 16.2% vs. absent 5.5%; adjusted HR: 2.90, 95% CI: 1.60–5.25; P < 0.001) were independently associated with a higher MACE rate. Thin-cap fibroatheroma lesions were also independently associated with the composite of death or ACS only (present 7.5% vs. absent 3.0%; adjusted HR: 2.51, 95% CI: 1.15–5.49; P = 0.021). Thin-cap fibroatheroma lesions with a plaque burden of ≥70% were associated with a higher MACE rate within (P = 0.011) and after (P < 0.001) 6 months of follow-up, while smaller TCFA lesions were only associated with a higher MACE rate after 6 months (P = 0.033).

Conclusion
In patients undergoing coronary angiography, the presence of IVUS virtual histology-derived TCFA lesions in a non-culprit coronary artery is strongly and independently predictive for the occurrence of MACE within 1 year, particularly of death and ACS. Thin-cap fibroatheroma lesions with a large plaque burden carry higher risk than small TCFA lesions, especially on the short term.

Keywords
Atherosclerosis • Intravascular ultrasound • Virtual histology • Thin-cap fibroatheroma • Natural history • Prognosis

† These authors contributed equally to this work.
* Corresponding author. Tel: +31 102062828, Fax: +31 107044759, Email: h.garciagarcia@erasmusmc.nl

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2013. For permissions please email: journals.permissions@oup.com
Introduction

Acute coronary syndromes (ACS) are expected to remain the leading cause of mortality and morbidity in the upcoming years. Patients with a history of cardiovascular disease have an increased risk for ACS. Post-mortem studies have shown that ACS is mostly caused by thin-cap fibroatheroma (TCFA) lesions. Detection of these coronary lesions that are at high risk to rupture may be highly relevant for further improvement of prognostication and for optimal choice of treatment. However, these high-risk lesions cannot be easily detected by coronary angiography.

Intravascular ultrasound (IVUS) radiofrequency analyses, also known as IVUS virtual histology, allow for differentiation of various plaque phenotypes and may therefore be well suited for detection of plaques that are at high risk to rupture. The Providing Regional Observations to Study Predictors of Events in the Coronary Tree (PROSPECT) study has shown that plaque characteristics as assessed by IVUS were independently predictive for recurrent cardiac events in patients admitted with an ACS. However, the events in PROSPECT were mainly driven by rehospitalizations for unstable or progressive angina, while less is known about the prognostic value of IVUS for acute cardiac events as a consequence of spontaneous plaque rupture (i.e. recurrent ACS or death). Furthermore, the prognostic value of IVUS in patients with stable angina remains unclear. This study aims to investigate the prognostic value of in vivo detection of high-risk plaques by IVUS in patients undergoing coronary angiography for ACS or stable angina.

Methods

Study population

The design of the European Collaborative Project on Inflammation and Vascular Wall Remodeling in Atherosclerosis – Intravascular Ultrasound (ATHEROREMO-IVUS) study has been described elsewhere. In brief, 581 patients who underwent diagnostic coronary angiography or percutaneous coronary intervention (PCI) for ACS or stable angina pectoris have been included between 2008 and 2011 in the Erasmus MC, Rotterdam, the Netherlands (see Supplementary material online, Figure S1). Although this original ATHEROEMO-IVUS cohort was further enriched with eligible patients who participated in the Integrated Biomarker and Imaging Study-2 (IBIS-2) trial of darapladib vs. placebo, these additional IBIS-2 patients were not included in the present analysis in order to prevent possible treatment interaction from darapladib.

The ATHEROEMO-IVUS study was approved by the medical ethics committee of the Erasmus MC. The study was performed in accordance with the criteria described in the declaration of Helsinki. Written informed consent was obtained from all included patients. This study is registered with ClinicalTrials.gov, number NCT01789411.

Intravascular ultrasound imaging

Following the standard coronary angiography procedure, IVUS imaging of a non-culprit coronary artery was performed. Selection of the non-culprit vessel was predefined in the study protocol. The order of preference for selection of the non-culprit vessel was: (i) left anterior descending artery; (ii) right coronary artery; (iii) left circumflex artery. All IVUS data were acquired with the Volcano s5/s5i Imaging System (Volcano Corp., San Diego, CA, USA) using a Volcano Eagle Eye Gold IVUS catheter (20 MHz). An automatic pullback system was used with a standard pull back speed of 0.5 mm/s. The baseline IVUS images were sent to an independent core laboratory (Cardialysis BV, Rotterdam, the Netherlands) for offline analysis. The core laboratory personnel were blinded for baseline patient characteristics and clinical outcomes data. The IVUS grey-scale and virtual histology analyses were performed using the pcVH 2.1 and qVH (Volcano Corp., San Diego, CA, USA) software. The external elastic membrane and luminal borders were contoured for each frame of the virtual histology-derived data set. Extent and phenotype of the atherosclerotic plaque were assessed. The plaque burden was defined as plaque and media cross-sectional area divided by an external elastic membrane cross-sectional area. A coronary lesion was defined as a segment with a plaque burden of >40% in at least three consecutive frames (see Supplementary material online, Figure S2). Using IVUS virtual histology, the composition of the atherosclerotic lesions was characterized into four different tissue types: fibrous, fibro-fatty, dense calcium, and necrotic core. Confluence of the necrotic core and dense calcium and the contact of the necrotic core with the lumen were independently assessed by visual examination, which was performed independently by three investigators (H.M.G., S.P.B., and J.H.H.) who were blinded to the clinical outcomes. Consensus was reached in case of disagreement. The lesions were further classified into: (i) adaptive intimal thickening (intimal thickening of <600 µm for <20% of the circumference); (ii) pathological intimal thickening (intimal thickening ≥ 600 µm for >20% of the circumference with >15% fibrofatty tissue and no confluent necrotic core or dense calcium); (iii) fibrotic plaque (consisting predominantly of fibrous tissue without confluent necrotic core or dense calcium); (iv) fibrocalcific plaque (presence of >10% confluent dense calcium without confluent necrotic core); (v) fibroatheroma (presence of >10% confluent necrotic core with an overlying layer of fibrous tissue); (vi) calcified fibroatheroma (fibroatheroma containing >10% confluent dense calcium); (vii) non-calcified TCFA (presence of >10% confluent necrotic core in direct contact with the lumen); (viii) calcified TCFA (TCFA containing >10% of confluent dense calcium) (Figure 1). All of the above-mentioned criteria should be present in three consecutive frames for a lesion to be considered of a particular category. Thin-cap fibroatheroma lesions with a plaque burden of at least 70% were classified as large TCFA lesions.

Study endpoints

Clinical follow-up started at inclusion and lasted 1 year. Post-discharge survival status was obtained from municipal civil registries. Post-discharge rehospitalizations were prospectively assessed during the follow-up. Questionnaires focusing on the occurrence of MACES were sent to all living patients. Subsequently, hospital discharge letters were obtained and treating physicians and institutions were contacted for additional information whenever necessary. Acute coronary syndrome was defined as the clinical diagnosis of ST-segment elevation myocardial infarction (STEMI), non-STEMI, or unstable angina pectoris in accordance with the guidelines of the European Society of Cardiology. Unplanned coronary revascularization was defined as unplanned repeat PCI or coronary artery bypass grafting (CABG). All events were adjudicated as related to a coronary site that was treated during the index procedure (culprit lesion-related event) or as related to a coronary site that was not treated during the index procedure (non-culprit lesion-related event). Events that were related to both the culprit lesion and a non-culprit site (e.g. revascularization of multiple vessels with CABG) were classified into both categories. When information was not sufficient to classify an event as either culprit lesion related or non-culprit lesion related, the event was classified as indeterminate.

The primary endpoint was MACE, defined as non-culprit lesion related or indeterminate mortality, ACS, or unplanned coronary revascularization. The secondary endpoint was defined as the composite of...
non-culprit lesion related or indeterminate mortality or ACS. Definite culprit lesion-related events were not counted in the primary and secondary endpoint. The occurrence of culprit lesion-related events is most probably caused by in-stent restenosis or in-stent thrombosis, while we were only interested in unanticipated, spontaneous MACE. The endpoints were adjudicated by a clinical event committee that had no knowledge of the IVUS data.

Statistical analysis

Under the previously described assumptions (design paper) that high-risk lesions (e.g. TCFA) will be present in 30% of the patients and that MACE will occur in 10% of the total study population, our sample size of 581 patients would provide 85–99% power to detect a hazard ratio (HR) in the range of 2.0–2.5 with a two-sided alpha of 0.05.11

Normally distributed continuous variables are presented as means ± standard deviation. Non-normally distributed continuous variables are presented as median and inter-quartile range. Categorical variables are presented in numbers and percentages. Patients lost to follow-up were considered at risk until the date of last contact, at which time-point they were censored. Cumulative event rates were estimated according to the Kaplan–Meier method. Cumulative Kaplan–Meier event curves were compared by the log-rank test. Cox proportional hazards regression analyses were performed to evaluate the associations between IVUS characteristics and study endpoints. In multivariable analyses, the variables age, gender, diabetes mellitus, hypertension, history of PCI, and indication for coronary angiography were considered as potential confounders and were entered into the full model. These covariates (except for indication for coronary angiography) were chosen based on the multivariable model that was used in the PROSPECT study, taking into account the number of events available.10 The final results are presented as HRs with 95% confidence interval (95% CI). The z-test for heterogeneity was performed to test for heterogeneity in effect estimates between patients admitted with and without ACS. All statistical analyses were performed at the patient level. All data were analysed with the SPSS software (SPSS 20.0, IBM corp., Armonk, NY, USA).

All statistical tests were two-tailed and *P*-values <0.05 were considered statistically significant.

Results

Baseline characteristics

The mean age of the study population was 61.6 ± 11.3 years, 75.6% were men and 17.0% had diabetes mellitus (Table 1). Coronary angiography or PCI was performed for various indications: 28.7% of the patients had an acute myocardial infarction (STEMI and non-STEMI), 26.0% of the patients had unstable angina pectoris, and 43.7% of patients had stable angina pectoris. The median length of the imaged coronary segment was 44.3 (33.8–55.4) mm. The median interslice distance was 0.40 mm. A total of 724 lesions were identified in the imaged coronary segment of 508 (87.4%) patients, including 127 (17.5%) lesions with a plaque burden of at least 70% in 124 (21.3%) patients and 206 (28.5%) lesions with a minimal luminal area of 4.0 mm² or less in 182 (31.3%) patients (Figure 2 and see Supplementary material online, Table S1). On the basis of radiofrequency IVUS, 271 (37.4%) of the lesions have been classified as TCFA in 242 (41.7%) patients, including 71 (9.8%) TCFA lesions with a plaque burden of at least 70% in 69 (11.9%) patients, 61 (8.4%) TCFA lesions with a minimal luminal area of 4.0 mm² or less in 61 (10.5%) patients, and 35 (4.8%) TCFA lesions with a plaque burden of at least 70% and a minimal luminal area of 4.0 mm² in 35 (6.0%) patients. Antplatelet medications and statins were prescribed to the majority of patients at the time of discharge (see Supplementary material online, Table S2).

Major adverse cardiac events

Vital status was complete for 580 (99.8%) patients. The response rate of the questionnaires that were sent to all living patients was 91.5%.
Table 1 Baseline characteristics

<table>
<thead>
<tr>
<th>Patient characteristics</th>
<th>n = 581 patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>61.6 ± 11.3</td>
</tr>
<tr>
<td>Men, n (%)</td>
<td>439 (75.6)</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>99 (17.0)</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>300 (51.6)</td>
</tr>
<tr>
<td>Hypercholesterolaemia, n (%)</td>
<td>321 (55.2)</td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td>169 (29.1)</td>
</tr>
<tr>
<td>Positive family history, n (%)</td>
<td>301 (51.8)</td>
</tr>
<tr>
<td>Previous MI, n (%)</td>
<td>184 (31.7)</td>
</tr>
<tr>
<td>Previous PCI, n (%)</td>
<td>186 (32.0)</td>
</tr>
<tr>
<td>Previous CABG, n (%)</td>
<td>18 (3.1)</td>
</tr>
<tr>
<td>Previous stroke, n (%)</td>
<td>26 (4.5)</td>
</tr>
<tr>
<td>History of peripheral artery disease, n (%)</td>
<td>36 (6.2)</td>
</tr>
<tr>
<td>History of renal insufficiency, n (%)</td>
<td>32 (5.5)</td>
</tr>
<tr>
<td>History of heart failure, n (%)</td>
<td>19 (3.3)</td>
</tr>
<tr>
<td>C-reactive protein, mg/L</td>
<td>2.1 (0.9–5.4)</td>
</tr>
</tbody>
</table>

Procedural characteristics

- Indication for angiography:
 - Acute MI, n (%) 167 (28.7)
 - Unstable angina, n (%) 151 (26.0)
 - Stable angina, n (%) 254 (43.7)
 - Other, n (%) 9 (1.5)
- Coronary artery disease:
 - No significant stenosis, n (%) 43 (7.4)
 - One-vessel disease, n (%) 308 (53.0)
 - Two-vessel disease, n (%) 168 (28.9)
 - Three-vessel disease, n (%) 62 (10.7)
- PCI performed, n (%) 511 (88.0)

IVUS characteristics

- Imaged coronary artery:
 - Left anterior descending, n (%) 210 (36.1)
 - Left circumflex, n (%) 195 (33.6)
 - Right coronary artery, n (%) 176 (30.3)
- Imaged segment length, mm 44.3 (33.8–55.4)

* A significant stenosis was defined as a stenosis ≥ 50% of vessel diameter by visual assessment on the coronary angiogram.

CABG: coronary artery bypass grafting; MI: myocardial infarction; PCI: percutaneous coronary intervention.

After 1 year of follow-up, 56 patients had at least 1 event (Table 2). Unplanned coronary revascularization was performed in four patients who did not have PCI during the index procedure. A total of 11 patients had a definite culprit lesion-related event, while 27 patients had a definite non-culprit lesion-related event. Another 18 patients had an event that could not be judged to be either culprit lesion related or non-culprit lesion related and were therefore classified as having an indeterminate event. The cumulative Kaplan–Meier incidence of the 30-day, 6-month, and 1-year MACE (primary endpoint) was 0.7, 4.7, and 7.8%, respectively. The cumulative Kaplan–Meier incidence of the 30-day, 6-month, and 1-year MACE was not related to the index procedure.

Associations with incident major adverse cardiac events

Patients who did not have any lesion in the imaged coronary segment seemed to have a lower occurrence of MACE (absent 4.1% vs. present 8.3%; HR: 0.48, 95% CI: 0.15–1.54; P = 0.22) and a lower occurrence of the composite of death or ACS only (absent 1.4% vs. present 5.4%; HR: 0.25, 95% CI: 0.034–1.83; P = 0.17), although these associations were not statistically significant. The amount of the necrotic core in the imaged coronary segment was associated with MACE (see Supplementary material online, Table S3).

After adjustment for clinical characteristics, the presence of TCFA lesions (present 10.8% vs. absent 5.6%; adjusted HR: 1.98, 95% CI: 1.09–3.60; P = 0.026) and lesions with a plaque burden of at least 70% (present 16.2% vs. absent 5.5%; adjusted HR: 2.90, 95% CI: 1.60–5.25; P < 0.001) were independently associated with a higher occurrence of MACE, while the presence of lesions with a minimal luminal area of 4.0 mm² or less was not (present 9.4% vs. absent 7.1%; adjusted HR: 1.23, 95% CI: 0.67–2.26; P = 0.50) (Table 3 and see Supplementary material online, Table S4). There was no heterogeneity in the HR estimates between patients admitted with and without ACS (heterogeneity P = 0.31 for TCFA, P = 0.58 for the plaque burden of at least 70% and P = 0.65 for the minimal luminal area of 4.0 mm² or less). Calcified TCFA lesions seemed to carry a higher risk than non-calcified TCFA lesions, although the difference was not statistically significant (P = 0.32) (see Supplementary material online, Figure S3). The presence of TCFA lesions was also significantly associated with the composite of death or ACS only (present 7.5% vs. absent 3.0%; adjusted HR: 2.51, 95% CI: 1.15–5.49; P = 0.021).

Risk for the occurrence of MACE was further increased if the TCFA lesions had a minimal luminal area of 4.0 mm² or less, had a plaque burden of at least 70%, or a combination of these three characteristics (Figure 3 and see Supplementary material online, Figure S4). Thin-cap fibroatheroma lesions with a plaque burden of at least 70% were associated with a higher MACE rate both in the first 6 months (P = 0.011) and after 6 months (P < 0.001) of follow-up, while smaller TCFA lesions were only associated with a higher MACE rate after 6 months (P = 0.033) (Figure 4).

Discussion

This study investigated the prognostic value of in vivo high-risk plaque detection by IVUS for the occurrence of MACE in patients undergoing coronary angiography. In line with previous studies, we found that the presence of a TCFA lesion as assessed by IVUS in a non-culprit coronary artery was independently predictive for the occurrence of MACE that was not related to the index procedure. After 1 year of follow-up, 56 patients had at least 1 event (Table 2). Unplanned coronary revascularization was performed in four patients who did not have PCI during the index procedure. A total of 11 patients had a definite culprit lesion-related event, while 27 patients had a definite non-culprit lesion-related event. Another 18 patients had an event that could not be judged to be either culprit lesion related or non-culprit lesion related and were therefore classified as having an indeterminate event. The cumulative Kaplan–Meier incidence of the 30-day, 6-month, and 1-year MACE (primary endpoint) was 0.7, 4.7, and 7.8%, respectively. The cumulative Kaplan–Meier incidence of the 30-day, 6-month, and 1-year MACE was not related to the index procedure.
only) that were not related to the index procedure. Furthermore, we found that patients with a large TCFA lesion (with a plaque burden of at least 70%) were at a higher risk than patients with a small TCFA lesion. The presence of a small TCFA lesion was only predictive for clinical events occurring on the longer term (after 6 months).

Although the PROSPECT and the Virtual histology Intravascular ultrasound in Vulnerable Atherosclerosis (VIVA) studies have previously reported on the prognostic value of vulnerable plaque detection by IVUS, there are some limitations to the conclusion of these studies.1,14 First, the PROSPECT study only enrolled ACS patients.

Table 2 Patients with major adverse cardiac events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Definite culprit lesion-related events</th>
<th>Definite non-culprit lesion-related events</th>
<th>Indeterminate events</th>
<th>Non-culprit lesion related and indeterminate events combined</th>
<th>All events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite of major adverse cardiac events, n</td>
<td>11</td>
<td>27</td>
<td>18</td>
<td>45</td>
<td>56</td>
</tr>
<tr>
<td>Death from any cause, n</td>
<td>1</td>
<td>1</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Definite cardiac or unexplained death, n</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Acute coronary syndrome, n</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Myocardial infarction, n</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Unplanned coronary revascularization, n</td>
<td>7</td>
<td>17</td>
<td>0</td>
<td>17</td>
<td>24</td>
</tr>
<tr>
<td>Composite of death or acute coronary syndrome, n</td>
<td>4</td>
<td>10</td>
<td>18</td>
<td>28</td>
<td>32</td>
</tr>
</tbody>
</table>

*Primary endpoint.

*Secondary endpoint.
Table 3

<table>
<thead>
<tr>
<th>Associations with major adverse cardiac events</th>
<th>Unadjusted model</th>
<th>P-value</th>
<th>Adjusted model</th>
<th>P-value</th>
<th>Adjusted model</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major adverse cardiac events (primary endpoint)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thin-cap fibroatheroma</td>
<td>HR 1.96 (1.08–3.53)</td>
<td>0.026</td>
<td>HR 1.97 (1.09–3.57)</td>
<td>0.024</td>
<td>HR 2.00 (1.10–3.62)</td>
<td>0.022</td>
</tr>
<tr>
<td>Plaque burden ≥70%</td>
<td>HR 3.15 (1.75–5.68)</td>
<td>0.001</td>
<td>HR 2.83 (1.56–4.31)</td>
<td>0.001</td>
<td>HR 2.83 (1.56–4.31)</td>
<td>0.001</td>
</tr>
<tr>
<td>MLA ≤4.0 mm²</td>
<td>HR 1.36 (0.74–2.48)</td>
<td>0.32</td>
<td>HR 1.24 (0.68–2.38)</td>
<td>0.48</td>
<td>HR 1.24 (0.68–2.38)</td>
<td>0.48</td>
</tr>
<tr>
<td>Composite of death or acute coronary syndrome (secondary endpoint)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plaque burden ≥70%</td>
<td>HR 1.23 (0.57–2.67)</td>
<td>0.019</td>
<td>HR 1.12 (0.52–2.49)</td>
<td>0.76</td>
<td>HR 1.13 (0.52–2.49)</td>
<td>0.76</td>
</tr>
<tr>
<td>MLA ≤4.0 mm²</td>
<td>HR 1.36 (0.74–2.48)</td>
<td>0.32</td>
<td>HR 1.24 (0.68–2.38)</td>
<td>0.48</td>
<td>HR 1.24 (0.68–2.38)</td>
<td>0.48</td>
</tr>
</tbody>
</table>

HR, hazard ratio; MLA, minimal luminal area.

Therefore, the conclusions of this study cannot be directly extrapolated to patients with stable angina. In contrast, our study presents a patient population that underwent coronary angiography for ACS or stable angina and that may better reflect the ‘real world’ clinical practice. Secondly, the vast majority of events in the PROSPECT study consisted of rehospitalizations for unstable or progressive angina (69 out of the 74 patients with primary composite endpoint), while the majority of events in the VIVA study consisted of coronary revascularizations (14 out of the 16 patients with primary composite endpoint). Our study demonstrated that vulnerable coronary lesions as assessed in vivo by IVUS are significantly associated with the occurrence of acute cardiac events (composite of death or ACS only) that were not related to the index procedure. Finally, an important difference is that IVUS was performed in three coronary vessels in the PROSPECT and VIVA studies. Our study demonstrated that IVUS in only one non-culprit vessel is sufficient for prognostication. This finding is relevant for the use of IVUS in daily clinical practice, since IVUS acquisition and analysis of three vessels is more time consuming and may increase risk for complications.

Previous studies have demonstrated that coronary atherosclerotic plaque burden and local endothelial shear stress were also independently associated with the progression of the lesion and narrowing of the lumen. In accordance with these observations, we found that patients with a coronary lesion that had a plaque burden of at least 70% were at a higher risk for MACE. However, the presence of a lesion with a plaque burden of at least 70% was not significantly predictive for the composite of death or ACS only. These findings suggest that lesions with a high plaque burden are at high risk to cause a flow-limiting stenosis, requiring coronary revascularizations, and rehospitalizations for progressive angina.

Thin-cap fibroatheroma is the most common pathological substrate of ACS and has been found to be associated with incident cardiac events. In the PROSPECT study, non-culprit lesions associated with recurrent events (mainly driven by rehospitalizations) were more likely to be classified as TCFA on the basis of radiofrequency IVUS (adjusted HR: 3.35, 95% CI: 1.77–6.36; P < 0.001). In the VIVA study, the presence of a non-calcified TCFA lesion was the only factor that was associated with MACE, which was mainly driven by coronary revascularizations (unadjusted HR: 1.79; 95% CI: 1.20–2.66, P = 0.004). Likewise, we found that the presence of TCFA lesions as assessed with IVUS was independently predictive for MACE (adjusted HR: 1.98, 95% CI: 1.09–3.60; P = 0.026). Furthermore, the predictive value of TCFA lesions for the occurrence of acute cardiac events (composite of death or ACS only) was even stronger (adjusted HR: 2.51, 95% CI: 1.15–5.49; P = 0.021). These findings emphasize the biological importance of TCFA for plaque rupture.

We have also found that patients with a large TCFA lesion (with a plaque burden of at least 70%) were at a higher risk than patients with
a small TCFA lesion. Furthermore, large TCFA lesions were associated with a higher MACE rate within and after 6 months of follow-up, while smaller TCFA lesions were only associated with a higher MACE rate after 6 months. Based on these observations, it can be hypothesized that large TCFA lesions are more vulnerable and more prone to rupture, while small TCFA lesions may grow in time and may become more vulnerable in the future. In line with our findings, two previous studies have demonstrated that the majority of the untreated non-culprit TCFA lesions retain their TCFA morphology during the follow-up (6–13 months), and may be accompanied by
a decrease in the minimal luminal area and an increase in the necrotic core. An other small study of patients with a lower risk profile, however, has demonstrated that the majority of the TCFA lesions was healed after 1 year.12

Different MACE definitions have been used in the above-mentioned studies (death, ACS and unplanned revascularization in our study; cardiovascular death, cardiac arrest, myocardial infarction and rehospitalization due to unstable or progressive angina in the PROSPECT study; death, myocardial infarction, and unplanned revascularization in the VIVA study).10,14 Therefore, MACE rates of these studies cannot be directly compared. Nevertheless, the incidence of MACE seemed to be relatively high in our study population. For example, 18 deaths occurred in 581 patients within 1 year in our study compared with 2 deaths in 170 patients within 625 days in the VIVA, 31 deaths in 697 patients within 3.4 years in the PROSPECT, and 4 deaths in 506 patients within 9 months in the PREDICTION study.10,14,18 However, the MACE rate in our study was consistent with that of previous ‘all-comer’ registries in our hospital, which further emphasizes that our study population may better reflect the ‘real world’ clinical practice.12,24

Some limitations of this study need to be acknowledged. First, this is a prospective observational cohort study. Although we aimed to include a patient population that reflects clinical practice, those patients with any of the exclusion criteria could not be included in this study.11 Secondly, the spatial resolution of IVUS virtual histology (150 μm) is insufficient to exactly replicate histopathological definitions of a thin fibrous cap (<65 μm).25 Therefore, IVUS virtual histology tends to over-estimate the number of TCFA lesions. Nevertheless, the presence of IVUS virtual histology detected TCFA lesions has prognostic information and is therefore clinically relevant. Thirdly, the relatively small number of endpoints did not allow us to evaluate whether adding IVUS imaging to a prognostic model with conventional risk factors would result in improved risk prediction. Finally, repeat intracoronary imaging with IVUS virtual histology was not performed. Therefore, the dynamic nature of coronary artery lesion morphology could not be investigated. Large, future studies (e.g. IBIS-3, www.trialregister.nl identifier NTR2872) may provide useful data in this respect.26

In conclusion, IVUS virtual histology appeared to be a useful tool for in vivo detection of high-risk coronary lesions. In patients undergoing coronary angiography, the presence of IVUS virtual histology-derived TCFA lesions in a non-culprit coronary artery is strongly and independently predictive for the occurrence of MACE, particularly of death and ACS. Thin-cap fibroatheroma lesions with a large plaque burden are of a higher risk than small TCFA lesions, especially on the short term.

Supplementary material

Supplementary material is available at European Heart Journal online.

Acknowledgements

We would like to thank the following interventional cardiologists for their contribution to this study: Eric Duckers, MD, PhD; Willem van der Giessen, MD, PhD; Peter P.T. de Jaegere, MD, PhD; Nicolas van Mieghem, MD; Carl Schultz, MD, PhD; Patrick W. Serruys, MD, PhD; and Felix Zijlstra, MD, PhD. We are indebted to Prof. Willem van der Giessen, who had a valuable contribution in the design and completion of the study, but passed away before finalization of this work.

Funding

This work was supported by the European Commission, Seventh Framework Programme (FP7-HEALTH-2007-2.4.2) and the Netherlands Heart Foundation (NHS2009B091 to J.M.C. and NHS2007B012 to R.M.O.).

Conflict of interest: none declared.

References

coronary plaque phenotype as determined by intravascular ultrasound: rationale and design of the ATHEROREMO-IVUS study. EuroIntervention 2013; published online ahead of print doi:pii:20130113-01.

