help identify injury at a stage where timely intervention may reduce cardiovascular morbidity and mortality in cancer survivors.

Funding
No funding was obtained for completing this work. Dr. Moslehi is a recipient of a NIH K-grant (K08-HL097031) and the Watkins Discovery Award Program and Cardiovascular Leadership Council Investigator Award, Brigham and Women’s Hospital.

Conflict of interest: none declared.

References
The list of references is available in the online version of this paper.

CARDIOVASCULAR FLASHLIGHT

Multimodality imaging reveals regurgitant jet lesion in aneurysmal anterior mitral leaflet: a severe complication of endocarditis

Silvana Müller1, Herbert Hangler2, Gudrun Feuchtner3, and Thomas Bartel1*

1Division of Cardiology, Department of Internal Medicine III, Medical University Innsbruck, Innsbruck, Austria; 2Department of Cardiac Surgery, Medical University Innsbruck, Innsbruck, Austria; and 3Department of Radiology II, Medical University Innsbruck, Innsbruck, Austria

* Corresponding author. Tel: +43512 50481992, Fax: +43512 50422767, Email: thomas.bartel@i-med.ac.at

We report the case of a 40-year-old male admitted with intermittent fever attacks for 6 months, splenic embolism and blood culture findings of Streptococcus sanguinis, which is a subspecies of Streptococcus viridans. Two-dimensional transoesophageal echocardiography (TEE) revealed bicuspid aortic valve (AV) with organized and newly grown vegetations (Panel A) what led to the diagnosis of endocarditis lenta. Additionally, significant aortic regurgitation (AR) with an eccentric jet pointing at the anterior mitral leaflet (arrow, Panel B), an aneurysm of that leaflet comprising the A2-segment with a central perforation and significant regurgitation into left atrium (LA) were detected (Panel C). This pathophysiology was considered a regurgitant jet lesion due to retrograde contamination through microbial growth from AV. Cardiac computed tomography performed with a 128-slice dual-source scanner confirmed mitral valve aneurysm by the ‘Teddy Bear Sign’ and central perforation with leakage into LA (arrow, Panel D). Real-time three-dimensional TEE added an en-face-view of the perforated segmental aneurysm (arrows, Panel E) anticipating the surgical view after opening the LA (arrow, Panel F). All findings were confirmed intraoperatively and aortic valve replacement was complemented by mitral valve repair, including artificial ring implantation, resection of segmental aneurysm, and patch reconstruction of the A2-segment.

Since segmental mitral valve aneurysms have also been described as a result of non-infectious AR, this finding might be predominantly caused by mechanical stress due to specific jet orientation. In contrast, perforation and subsequent regurgitation into LA require retrograde transmission of endocarditis.