Genetic deletion of the adaptor protein p66Shc increases susceptibility to short-term ischaemic myocardial injury via intracellular salvage pathways

Alexander Akhmedov1,2,3†, Fabrizio Montecucco4,5,6†, Vincent Braunersreuther4, Giovanni G. Camici1,2,3, Philipp Jakob1,2,3, Martin F. Reiner1,2,3, Martina Glanzmann1,2,3, Fabienne Burger4,5,6, Francesco Paneni1,2,3,7, Katia Galan4, Graziano Pelli4, Nicolas Vuilleumier8,9, Alexandre Belin10, Jean-Paul Vallée10, Francois Mach4‡, and Thomas F. Lüscher1,2,3‡*

1Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Zurich, Switzerland; 2Department of Cardiology, University Heart Center, Center for Molecular Cardiology, University Hospital and University of Zurich, Ramistrasse 100, CH-8091 Zurich, Switzerland; 3Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; 4Division of Cardiology, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland; 5First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, Genoa, Italy; 6IRCCS Azienda Ospedaliera Universitaria San Martino—IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy; 7Cardiology Unit, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden; 8Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Switzerland; 9Department of Human Protein Science, Geneva Faculty of Medicine, Geneva, Switzerland; and 10Department of Radiology, CIBM, Geneva University Hospital, Geneva, Switzerland

Received 13 January 2014; revised 10 September 2014; accepted 13 September 2014; online publish-ahead-of-print 21 October 2014

See page 469 for the editorial comment on this article (doi:10.1093/eurheartj/ehu409)

Aims
Several intracellular mediators have been implicated as new therapeutic targets against myocardial ischaemia and reperfusion injury. However, clinically effective salvage pathways remain undiscovered. Here, we focused on the potential role of the adaptor protein p66Shc as a regulator of myocardial injury in a mouse model of cardiac ischaemia and reperfusion.

Methods and results
Adult male p66Shc deficient (p66Shc−/−) and C57Bl/6 wild-type (WT) mice were exposed to 30, 45, or 60 min of ischaemia and reperfusion (5, 15 min, or 24 h). Infarct size, systemic and intracardiac inflammation and oxidants, as well as cytosolic and mitochondrial apoptotic pathways were investigated. Following 30, but not 45 or 60 min of ischaemia, genetic p66Shc deficiency was associated with larger infarcts. In WT mice, in vivo p66Shc knock down by siRNA with transient protein deficiency confirmed these findings. P66Shc inhibition was not associated with any modification in post-infarction inflammation, oxidative burst nor cardiac vessel density or structure. However, in p66Shc−/− mice activation of the protective and anti-apoptotic Reperfusion Injury Salvage Kinases and Survivor Activating Factor Enhancement pathways were blunted and mitochondrial swelling and cellular apoptosis via the caspase-3 pathway increased compared with WT.

Conclusions
Genetic deletion of p66Shc increased susceptibility to myocardial injury in response to short-term ischaemia and reperfusion in mice. Still, additional studies are needed for assessing the role of this pathway in acute coronary syndrome patients.

Keywords
Acute myocardial infarction • Inflammation • Ischaemia • Reperfusion
Introduction

Myocardial injury during short-term ischaemia and reperfusion has become clinically important with the use of primary percutaneous coronary angioplasty as a first-line strategy in patients with acute coronary syndrome (ACS). Indeed, time from symptom onset to reperfusion is a major determinant of outcome. Thus, activation of protective pathways during this vulnerable period of ACS remains a clinical need. Knowledge of the mechanisms of myocardial ischaemia and reperfusion has been deepened with the use of animal models of human disease. Several molecular and cellular targets involved in cardiac injury and repair have been identified that are activated during ischaemia–reperfusion injury. Recently, three distinct cardioprotective pathways for those protein kinases have been proposed. The first is activated during the initial and middle phase of acute ischaemic preconditioning and includes activation of phosphoinositide 3 kinase (PI3K)/Akt and in turn endothelial nitric oxide synthase (eNOS) and nitric oxide, followed by guanylate cyclase and protein kinase C activation leading to activation of the ATP-dependent mitochondrial potassium channels and generation of reactive oxygen species (ROS). Finally, activating mitogen-activated protein kinase p38 and mitochondrial permeability pore (mPTP) opening.

In this context, cardiac ROS released following ischaemia–reperfusion are of interest as regulators of cardiac salvage pathways. To investigate this, we focused on the adaptor protein P66Shc which regulates cellular redox states, metabolism and life span and is a critical mediator of oxidative stress transduction. P66Shc acts not only in the cytosol but upon phosphorylation also as a specific redox enzyme in mitochondria, generating hydrogen peroxide. As such, the adaptor protein P66Shc might regulate ischaemia–reperfusion damage. However, whether such effects occur in vivo remains unknown.

Thus, we designed an in vivo study to investigate the role of this protein in a mouse model of ischaemia and reperfusion taking advantage of genetic deletion of P66Shc or transient in vivo knock down of the adaptor protein. In this setting, we investigated infarct size as well as activation of intracellular salvage or apoptotic pathways and their regulation by P66Shc.

Materials and methods

Animals

P66Shc−/− knockout mice were originally obtained from the Centro Nationale di Oncologia, Milano, Italy. The P66Shc deficient mouse colony was maintained in the own animal facility by crossbreeding homozygous animals. All animal experiments were performed on 12-to-14-week-old P66Shc−/− knockout and wild-type (WT) male mice. Both animal cohorts were maintained on identical C57Bl/6 genetic background. Genotyping was performed by PCR on ear punch biopsies using P66Shc-specific primers (data not shown).

All mice were maintained at 24°C with 12 h light–dark cycle and free access to food and water. They were kept on a standard western type chow. All procedures were approved by local ethics committees (both in Zurich and Geneva) and Swiss authorities and conformed to the ‘position of the American Heart Association on Research Animal Use’ and ARRIVE guidelines.

In situ hybridization

P66Shc In situ hybridization was performed using Leica BOND-MAX™ (Leica Biosystems, Buffalo Grove, IL, USA). Briefly, isolated murine WT and P66Shc−/− hearts were fixed in 4% paraformaldehyde in phosphate-buffered saline (PBS) for 24 h. Formalin-fixed paraffin-embedded tissue sections (5 μm) were deparaffinized in xylene, rehydrated in ascending alcohols, digested with Enzyme 2 (5 g/mL) for 15 min at ambient temperature. Samples (heart sections) were then denatured on a hot plate for 3 min at 90°C, and incubated for 1 h at 53°C in hybridization buffer (Exiqon, Woburn, MA, USA) containing 250 nM of double digoxigenin-labeled P66Shc LNA mRNA detection probe (Exiqon). After incubation, the samples were washed twice in BOND washing buffer at ambient temperature for 5 min. The second incubation was performed in the activation of the Reperfusion Injury Salvage Kinases (RISK) pathway, which comprises PI3K and extracellular signal-regulated mitogen-activated protein kinase (ERK)1/2, and leads to the inhibition of mPTP opening. The third is recruited during ischaemic pre- and post-conditioning and includes the Survivor Activating Factor Enhancement (SAFE) pathway, which comprises signal transducer and activator of transcription (Stat) and results in rearrangements in the nucleus and mitochondria. The complex interplay between these intracellular pathways remains largely unknown, but might represent a promising target to reduce cardiac damage during ischaemia and reperfusion.

In this context, cardiac ROS released following ischaemia–reperfusion are of interest as regulators of cardiac salvage pathways. To investigate this, we focused on the adaptor protein P66Shc which regulates cellular redox states, metabolism and life span and is a critical mediator of oxidative stress transduction. P66Shc acts not only in the cytosol but upon phosphorylation also as a specific redox enzyme in mitochondria, generating hydrogen peroxide. As such, the adaptor protein P66Shc might regulate ischaemia–reperfusion damage. However, whether such effects occur in vivo remains unknown.

In vivo knockdown of P66Shc

In vivo knockdown of P66Shc was performed by injecting a predesigned siRNA specifically targeting P66Shc (5′-UUG CUC UGU GUC AUC GCU G dTdT-3′, Microsynth AG, Switzerland). A scrambled siRNA
was used as a negative control (S'-UAC ACA CUC UCG UCU C dTdT-3', Microsynth AG, Switzerland). Amount of p66Shc siRNA was selected based on dose optimization studies (data not shown). The siRNA mix at the final dose of 1.6 mg/kg was incubated with the in vivo-jetPEI delivery reagent (Polyplus-Transfection, Inc., New York, NY, USA) for 15 min at room temperature and intravenously injected in a final volume of 160 μL, as previously reported. Successful knockdown of p66Shc was assessed by western blot in heart lysates.

In vivo pharmacological inhibition of Stat3

Some WT and p66Shc−/− knockout mice were pretreated with WP1066 (40 mg/kg, Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) or vehicle (10% DMSO in PBS) by intraperitoneal injection 5 min before ischaemia onset. Then, at 24 h of reperfusion, mice were euthanized and infarct size was histologically determined by triphenyltetrazolium chloride (TTC) staining.

Ischaemia and reperfusion in vivo

p66Shc−/− and WT (including those injected with siRNA) male mice (10–12 weeks of age) were initially anaesthetized with 4% isoflurane (AAR/V) and AAR (I/AAR), respectively.

Area at risk and myocardial infarct size (I) assessment

To assess area at risk (AAR) and infarct size (I) in *in vivo* myocardial protocols, mice were anaesthetized with ketamine–xylazine (4 mg/0.2%) and sacrificed for infarct size determination and immunohistochemical analyses.

Detection of cardiac troponin I and inflammatory mediators in mouse serum

Circulating cardiac troponin I (cTnI) levels were measured in serum after 24 h of reperfusion, using a high-sensitive ELISA kit (Life Diagnostics, Inc.). Serum levels of CXCL1 and CCL2 were measured by colorimetric enzyme-linked immunosorbent assay (ELISA, R&D Systems, Minneapolis, MN, USA), following manufacturer’s instructions. The limit of detection was 0.156 ng/mL for cTnI, 15.6 pg/mL for CXCL1, 7.8 pg/mL for CCL2. Mean intra- and interassay coefficients of variation were <6% for all mediators.

Immunostaining

Hearts from animals sacrificed both before and after 30 min of ischaemia and 24 h of reperfusion were frozen in optimal cutting temperature medium (OCT) and stored at −80°C. Sections (7 μm) were cut and fixed in 10% formaldehyde solution, stained with a solution of triphenyltetrazolium chloride (TTC) for 15 min, and photographed with a digital camera (Nikon Coolpix) to distinguish continuously perfused tissue (blue), stained ischaemic viable tissue (red), and unstained necrotic tissue (white). The different zones were determined using MetaMorph software (version 6.0, Universal Imaging Corporation). Area at risk and left ventricular I were expressed as percentage of ventricle surface (AAR/V) and AAR (II/AAR), respectively.

Oxidative stress determination in mouse infarcted hearts

Measurement of O$_2^\cdot$− in mouse hearts at 30 min of ischaemia and 24 h of reperfusion was performed using the O$_2^\cdot$−-sensitive dye dihydroethidium (DHE, Molecular Probes, Life Technologies Corporation, Zug, Switzerland) as previously described. Five frozen midventricular cardiac sections per animal were used, and nuclei were stained with 4′,6-diamidino-2-phenylindole. In situ fluorescense was assessed using fluorescence microscopy and quantification performed with MetaMorph software.

Western blotting

Mouse hearts were isolated after 30 min of ischaemia followed by either 5 or 15 min of reperfusion and were homogenized in lysis buffer containing 50 mM Tris, pH 7.5, 1 mM EDTA, pH 8.0, 150 mM NaCl, 1 mM PMSF, and 1 mM DTT. Total protein extracts were cleared by centrifugation and 40 μg of proteins separated by gel electrophoresis on 10% SDS–polyacrylamide gels followed by semi-dry transfer onto PVDF membranes. Membranes were incubated with primary anti-phospho-Akt (Thr308), anti-phospho-Akt(Ser473), anti-Akt, anti-phospho-p42/p44 MAPK, anti-p42/p44 MAPK, anti-phospho-p38 MAPK, anti-p38 MAPK, anti-phospho-Stat3(Ser727), anti-phospho-Stat3(Tyr705), anti-Stat3, anti-phospho-SAPK/JNK(Thr183/Tyr185), and anti-SAPK/JNK antibody (all

Detection of cardiac troponin I and inflammatory mediators in mouse serum

Circulating cardiac troponin I (cTnI) levels were measured in serum after 24 h of reperfusion, using a high-sensitive ELISA kit (Life Diagnostics, Inc.). Serum levels of CXCL1 and CCL2 were measured by colorimetric enzyme-linked immunosorbent assay (ELISA, R&D Systems, Minneapolis, MN, USA), following manufacturer’s instructions. The limit of detection was 0.156 ng/mL for cTnI, 15.6 pg/mL for CXCL1, 7.8 pg/mL for CCL2. Mean intra- and interassay coefficients of variation were <6% for all mediators.

Immunostaining

Hearts from animals sacrificed both before and after 30 min of ischaemia and 24 h of reperfusion were frozen in optimal cutting temperature and serially cut from the occlusion locus to the apex in 7 μm sections. Immunostainings for neutrophils (anti-mouse Ly-6G Ab, dilution 1:100; BD Pharmingen™, San Jose, CA, USA), macrophages (anti-mouse CD68 Ab, dilution: 1:400; ABD Serotec, Dusseldorf, Germany), endothelial (anti-mouse CD31 Ab, dilution: 1:500, Santa Cruz Biotechnology) or smooth muscle cells (anti-mouse smooth muscle actin Ab, dilution 1:20, Thermo Scientific, Inc., Waltham, MA, USA) were performed on five midventricular cardiac or brain sections per animal, and quantification performed with the MetaMorph software, as previously described.

Oxidative stress determination in mouse infarcted hearts

Measurement of O$_2^\cdot$− in mouse hearts at 30 min of ischaemia and 24 h of reperfusion was performed using the O$_2^\cdot$−-sensitive dye dihydroethidium (DHE, Molecular Probes, Life Technologies Corporation, Zug, Switzerland) as previously described. Five frozen midventricular cardiac sections per animal were used, and nuclei were stained with 4′,6-diamidino-2-phenylindole. In situ fluorescense was assessed using fluorescence microscopy and quantification performed with MetaMorph software.

Western blotting

Mouse hearts were isolated after 30 min of ischaemia followed by either 5 or 15 min of reperfusion and were homogenized in lysis buffer containing 50 mM Tris, pH 7.5, 1 mM EDTA, pH 8.0, 150 mM NaCl, 1 mM PMSF, and 1 mM DTT. Total protein extracts were cleared by centrifugation and 40 μg of proteins separated by gel electrophoresis on 10% SDS–polyacrylamide gel followed by semi-dry transfer onto PVDF membranes. Membranes were incubated with primary anti-phospho-Akt (Thr308), anti-phospho-Akt(Ser473), anti-Akt, anti-phospho-p42/p44 MAPK, anti-p42/p44 MAPK, anti-phospho-p38 MAPK, anti-p38 MAPK, anti-phospho-Stat3(Ser727), anti-phospho-Stat3(Tyr705), anti-Stat3, anti-phospho-SAPK/JNK(Thr183/Tyr185), and anti-SAPK/JNK antibody (all

Detection of cardiac troponin I and inflammatory mediators in mouse serum

Circulating cardiac troponin I (cTnI) levels were measured in serum after 24 h of reperfusion, using a high-sensitive ELISA kit (Life Diagnostics, Inc.). Serum levels of CXCL1 and CCL2 were measured by colorimetric enzyme-linked immunosorbent assay (ELISA, R&D Systems, Minneapolis, MN, USA), following manufacturer’s instructions. The limit of detection was 0.156 ng/mL for cTnI, 15.6 pg/mL for CXCL1, 7.8 pg/mL for CCL2. Mean intra- and interassay coefficients of variation were <6% for all mediators.

Immunostaining

Hearts from animals sacrificed both before and after 30 min of ischaemia and 24 h of reperfusion were frozen in optimal cutting temperature and serially cut from the occlusion locus to the apex in 7 μm sections. Immunostainings for neutrophils (anti-mouse Ly-6G Ab, dilution 1:100; BD Pharmingen™, San Jose, CA, USA), macrophages (anti-mouse CD68 Ab, dilution: 1:400; ABD Serotec, Dusseldorf, Germany), endothelial (anti-mouse CD31 Ab, dilution: 1:500, Santa Cruz Biotechnology) or smooth muscle cells (anti-mouse smooth muscle actin Ab, dilution 1:20, Thermo Scientific, Inc., Waltham, MA, USA) were performed on five midventricular cardiac or brain sections per animal, and quantification performed with the MetaMorph software, as previously described.

Oxidative stress determination in mouse infarcted hearts

Measurement of O$_2^\cdot$− in mouse hearts at 30 min of ischaemia and 24 h of reperfusion was performed using the O$_2^\cdot$−-sensitive dye dihydroethidium (DHE, Molecular Probes, Life Technologies Corporation, Zug, Switzerland) as previously described. Five frozen midventricular cardiac sections per animal were used, and nuclei were stained with 4′,6-diamidino-2-phenylindole. In situ fluorescense was assessed using fluorescence microscopy and quantification performed with MetaMorph software.

Western blotting

Mouse hearts were isolated after 30 min of ischaemia followed by either 5 or 15 min of reperfusion and were homogenized in lysis buffer containing 50 mM Tris, pH 7.5, 1 mM EDTA, pH 8.0, 150 mM NaCl, 1 mM PMSF, and 1 mM DTT. Total protein extracts were cleared by centrifugation and 40 μg of proteins separated by gel electrophoresis on 10% SDS–polyacrylamide gel followed by semi-dry transfer onto PVDF membranes. Membranes were incubated with primary anti-phospho-Akt (Thr308), anti-phospho-Akt(Ser473), anti-Akt, anti-phospho-p42/p44 MAPK, anti-p42/p44 MAPK, anti-phospho-p38 MAPK, anti-p38 MAPK, anti-phospho-Stat3(Ser727), anti-phospho-Stat3(Tyr705), anti-Stat3, anti-phospho-SAPK/JNK(Thr183/Tyr185), and anti-SAPK/JNK antibody (all
from Cell Signaling, Danvers, MA, USA). Primary anti-GAPDH (Millipore Corporation, Billerica, MA, USA) antibodies were used as loading control. Protein expression was quantified using Scion Image™ and expressed as ratio to corresponding loading control.

Mitochondrial swelling assay

Mitochondria (40 μg) from mouse hearts submitted to 30 min ischaemia and 24 h of reperfusion were isolated in swelling buffer (250 mM sucrose, 10 mM 3-(n-morpholino)propanesulfonic acid, 5 μM EGTA, 2 mM MgCl₂, 5 mM KH₂PO₄, 5 mM pyruvate, and 5 mM malate) were incubated with 150 μM CaCl₂ in a final volume of 200 μL in 96-well plate for 20 min. Absorbance at 520 nm was read every 5 min.

Caspase 3 assay

The caspase 3 assay was performed in total protein extracts from murine hearts after 30 min ischaemia and 5–15 min of reperfusion, using caspase 3 colorimetric assay kit (Sigma), according to manufacturer’s recommendations.

Apoptotic cell measurement within infarcted hearts

Apoptosis was evaluated on cryosections of infarcted hearts after 30 min of ischaemia and 24 h of reperfusion. The staining was performed using the Dead End™ colorimetric terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) system (Promega, Madison, WI, USA). Diaminobenzidine was used as the chromogenic substrate (according to the manufacturer’s instructions). Results were expressed as percentages of stained area on total heart surface area.

Statistical analysis

The Mann–Whitney nonparametric test (the normality assumption of the variables’ distribution in both groups was violated) was used for comparisons of continuous variables. Kruskal–Wallis one-way analysis of variance was used for multiple group comparison. All results are expressed as mean ± SEM. Values of P < 0.05 (two tailed) were considered significant. All analyses were done with GraphPad Prism software version 5.01.

Results

Expression pattern of p66Shc in cardiac tissue

To determine the expression of p66Shc within cardiac tissue, we performed in situ hybridization of paraffin-embedded cross sections of perfused hearts isolated from WT and p66Shc⁻/⁻ mice using a p66Shc-specific probe. In order to allocate p66Shc staining to cardiomyocytes, we performed H/E staining of adjacent sections (Figure 1). To visualize heart vessels and arterioles, we used smooth muscle staining.
actin and CD31 immunostaining of cardiac and brain tissues. Compared with WT no changes in either heart vessels (CD31 +) or intramyocardial and coronary arterioles (SMA +) were noted in p66Shc−/− mice (see Supplementary material online, Figures S1 and S2).

Infarct size after ischaemia and reperfusion in wild-type and p66Shc−/− mice

To investigate the impact of genetic deletion of p66Shc on infarct size, we submitted mice to 30, 45, or 60 min of ischaemia followed by 24 h of reperfusion. n = 11 for WT and n = 14 for p66Shc−/−. (A) Quantification of area at risk per ventricle area (P = 0.3127). (B) Quantification of infarct size per ventricle area. Right panel: Representative images of 2-3-5-triphenyl tetrazolium chloride-stained middle heart sections of control wild-type and p66Shc−/− mice. (C and D) Forty-five minutes of ischaemia followed by 24 h of reperfusion. n = 14 for WT and n = 9 for p66Shc−/−. (E) Quantification of area at risk per ventricle area (P = 0.8014). (D) Quantification of infarct size per ventricle area (P = 0.6279). Right panel: Representative images of 2-3-5-triphenyl tetrazolium chloride-stained-stained middle heart sections of wild type and p66Shc−/−. (E and F) 60 min of ischaemia followed by 24 h of reperfusion. n = 12 for wild type and n = 11 for p66Shc−/−. (E) Quantification of area at risk per ventricle area (P = 0.4063). (F) Quantification of infarct size per ventricle area (P = 0.6838). Right panel: Representative images of 2-3-5-triphenyl tetrazolium chloride-stained-stained middle heart sections of wild type and p66Shc−/−. Serum cardiac troponin I levels of wild type or p66Shc−/− after 30 (G), 45 (H), or 60 (I) min of ischaemia followed by 24 h of reperfusion. n = 10 for both genotypes (P = 0.0659 for H and P = 0.8915 for I). Data are mean ± SEM; *P < 0.05 vs. wild type.
of reperfusion. The AAR after 30 min of ischaemia were comparable for both genotypes indicating that coronary ligatures were placed at the same level of the LAD in both groups (Figure 2A), p66Shc^{−/−} mice exhibited only increased infarct size after 30 min of ischaemia followed by 24 h of reperfusion as compared with WT (I/V, mean ± SEM: 5.3% ± 2.7 vs. 2.4% ± 1.0, Figure 2B). In contrast, after prolonged ischaemia of 45 or 60 min, despite comparable areas at risk (Figure 2C and E), infarct size was similar in both groups (Figure 2D and F). This indicates that p66Shc^{−/−} mice display an increased susceptibility to ischaemia leading to larger infarcts at shorter, but not prolonged periods of ischaemia.

Serum cTnI levels (a biomarker of cardiac necrosis) confirmed the histological results with significantly higher levels in p66Shc^{−/−} mice only after 30 min of ischaemia (Figure 2G–I). Heart vessels (CD31⁺) or intramyocardial and coronary arterioles (SMA⁺) did not differ in p66Shc^{−/−} mice after ischaemia and reperfusion compared with WT as assessed by smooth muscle actin and CD31 immunostaining, respectively (see Supplementary material online, Figure S3).

Finally, we found that expression of p66Shc protein in the heart from WT subjected to 30 min of ischaemia followed by either 12 or 24 h of reperfusion was increased compared with p66Shc protein expression without cardiac injury (see Supplementary material online, Figure S4).

Infarct size after ischaemia and reperfusion during in vivo silencing of p66Shc

In order to investigate whether transient silencing of p66Shc has similar effects on infarct size as in p66Shc^{−/−} mice, we performed in vivo knockdown of p66Shc in WT by injecting small interference RNA specific for p66Shc or scrambled siRNA control into the tail vein. Four days after siRNA application, mice were submitted to 30 min of ischaemia followed by 24 h of reperfusion (Figure 3A). We first confirmed that p66Shc was significantly downregulated at the protein level upon in vivo siRNA treatment (Figure 3B) and that the AAR was similar in all treatment groups (Figure 3C). Similar to p66Shc^{−/−} mice, p66Shc-siRNA-mediated silencing was associated with a significant increase in infarct size as compared with controls at 30 min of ischaemia (14.9% ± 2.4 vs. 9.4% ± 2.9, Figure 3D and E). Again, there was no difference in arteriole or vessel density in WT mice injected

![Figure 3](https://academic.oup.com/eurheartj/article-abstract/36/8/516/496229/521)
Genetic deletion or in vivo knockdown of p66Shc do not influence inflammatory processes during ischaemia and reperfusion

In order to investigate whether genetic deletion or silencing of p66Shc influences post-infarction inflammation (a critical mechanism of injury during reperfusion), after short-term myocardial ischaemia, we investigated systemic levels of CC and CXC chemokines (attracting inflammatory cells), cardiac leukocyte infiltration and mitochondrial swelling and apoptosis in infarcted hearts induced by calcium chloride overload (CaCl2). The rate of mitochondrial swelling was measured by light scattering at 520 nm. Accordingly, p66Shc knockdown did not modify neutrophils (Ly-6G+ cells, Supplementary material online, Figure S7A), macrophages (see Supplementary material online, Figure S7B), or ROS (see Supplementary material online, Figure S7C–E) within infarcted hearts when compared with scr siRNA controls. Finally, no significant changes were observed in basal cardiac and brain ROS levels in both groups of mice as assessed by 4-HNE and DiBrY stainings (see Supplementary material online, Figures S8 and S9).

Table 1 Serum levels of CXCL1 (neutrophil chemoattractant) and CCL2 (monocyte/macrophage chemoattractant) after 30 min of ischaemia and 24 h reperfusion

<table>
<thead>
<tr>
<th>Chemotactant (pg/mL)</th>
<th>Genetic deletion</th>
<th>Transient knockdown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT</td>
<td>p66Shc−/−</td>
</tr>
<tr>
<td>CXCL1</td>
<td>579.3 ± 635.7</td>
<td>476.6 ± 590.0</td>
</tr>
<tr>
<td>CCL2</td>
<td>28.2 ± 18.69</td>
<td>31.1 ± 17.35</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SD; n = 10–18 per group.

with p66Shc siRNA after ischaemia and reperfusion compared with scramble injected WT (see Supplementary material online, Figure S5).

Genetic deletion of p66Shc prevents activation of RISK and SAFE salvage pathways

Activation of survival protective pathways in response to short-term ischaemia early during reperfusion was then investigated. We examined phosphorylation levels of Akt, ERK1/2 and Stat3, key members of RISK (Akt and ERK1/2) and SAFE (Stat3) intrinsic prosurvival signalling pathways known to limit reperfusion injury, during first 5 and 15 min of reperfusion. Significant abrogation in the phosphorylation of Akt (Thr308) and Stat3 (Ser727) was obvious at 5, but not at 15 min of reperfusion in p66Shc−/− mice when compared with WT, indicating a transient inhibition of these salvage pathways (Figure 4A and C). p66Shc deficiency was not associated with any modification in the phosphorylation of other amino acid residues of Akt (Ser473) or Stat3 (Tyr705) neither at 5 nor at 15 min of reperfusion (Figure 4B and D). On the other hand, no significant change in ERK1/2 phosphorylation was noted in p66Shc−/− animals when compared with WT (Supplementary material online, Figure S10). Finally, both WT and p66Shc−/− mice were treated with a single i.p. injection of the Stat3 inhibitor WP1066 (40 mg/kg) or vehicle 5 min before ischaemia (30 min) and 24 h of reperfusion (Figure 4E). Histological evaluation revealed an AAR of ~50–55% in all treatment groups (Figure 4F). The infarct size was significantly increased in both WT and p66Shc−/− WP1066-treated groups when compared with corresponding vehicle controls (Figure 4G).

Genetic deletion and in vivo knockdown of p66Shc promotes mitochondrial swelling and apoptosis in infarcted hearts

Phosphorylation of Stat3 on tyrosine 705 is known to drive p66Shc to the nucleus, whereas the phosphorylation on serine 727 drives the adaptor protein to the mitochondria where it regulates permeability transition pores (PTP). To investigate the impact of Stat3 (Ser727) phosphorylation on mitochondrial function, we performed swelling assay using isolated mitochondria from WT and p66Shc−/−/p66Shc−/− hearts. As a consequence of these negligible differences between genotypes on post-infarction circulating levels of CC and CXC chemokines, p66Shc−/− mice and WT mice exhibited similar levels of infiltrating neutrophils (Ly-6G+ cells, Supplementary material online, Figure S6A), macrophages (see Supplementary material online, Figure S6B), and ROS (assessed by 4-hydroxy-2-nonenal [4-HNE], dibromotyrosine [DiBrY], superoxide [DHE] stainings, respectively) (see Supplementary material online, Figure 6C–E). Accordingly, in vivo p66Shc knockdown did not modify neutrophils (Ly-6G+ cells, Supplementary material online, Figure S7A), macrophages (see Supplementary material online, Figure S7B), or ROS (see Supplementary material online, Figure 7C–E) within infarcted hearts when compared with scr siRNA controls. Finally, no significant changes were observed in basal cardiac and brain ROS levels in both groups of mice as assessed by 4-HNE and DiBrY stainings (see Supplementary material online, Figures S8 and S9).

With p66Shc siRNA after ischaemia and reperfusion compared with scramble injected WT (see Supplementary material online, Figure S5).
Figure 4 Genetic deletion of p66Shc inhibits early activation of salvage signalling pathways in infarcted hearts. After 30 min ischaemia followed by 5–15 min of reperfusion, hearts were lysed and phosphorylation of intracellular kinases assessed by western blot. n = 7 for wild type and n = 6 for p66Shc−/−. Data are mean ± SEM. *P < 0.05 vs. wild type. (A) Akt (Thr308) phosphorylation (P = 0.8982 for 15 min). (B) Akt (Ser473) phosphorylation (P = 0.8610 for 5 min and P = 0.1544 for 15 min). (C) Stat3 (Ser727) phosphorylation (P = 0.1443 for 15 min). (D) Stat3 (Tyr705) phosphorylation (P = 0.2153 for 5 min and P = 0.9163 for 15 min). (E) Scheme of the experiment set up. WP1066 or vehicle was injected i.v. 5 min before in vivo onset of 30 min ischaemia in wild type and p66Shc−/−. At 24 h of reperfusion mice were euthanized and infarct size assessed. (F) Quantification of area at risk per ventricle area (P = 0.1429 for wild type and P = 0.0971 for p66Shc−/−). (G) Quantification of infarct size per ventricle area. (C) Right panel: Representative images of 2-3-5-triphenyl tetrazolium chloride-stained middle heart sections of wild type and p66Shc−/−.
increased Tunel-positive cell content when compared with WT
(Figure 5C). A similar result was also seen in p66Shc siRNA-treated
mice when compared with scr siRNA controls (Figure 5D).

Discussion

This study for the first time demonstrates that, unlike in the brain,19
p66Shc protects the myocardium during short-term ischaemia and
reperfusion from injury in vivo in mice. Indeed, we showed that
(1) p66Shc is expressed both in the myocardium and the coronary
vasculature, (2) p66Shc mice display increased infarct size when
compared with WT controls when exposed to a short-term
period of ischaemia only (i.e. 30 min), (3) similar effects can be
obtained in WT mice by transient silencing of p66 Shc using siRNA,
(4) p66Shc regulates salvage pathways, and (4) prevents mitochondrial
swelling and apoptosis via caspase-3.

P66Shc is differentially expressed in different organs and tissues.
Importantly, unlike in the brain (where p66Shc is exclusively expressed
in the endothelium of blood vessels),19 in the heart the adaptor
protein is expressed both in myocardial tissue and coronary blood
vessels. At baseline, \(p66^{Shc} \) knockout mice did not differ from WT in their vessel structure and density or metabolism of reactive oxidant species in both the heart and brain. Similarly, in infarcted hearts after 30 min of ischaemia and 24 h of reperfusion, no histological alterations of vessel density and structure or oxidant content were notable. This demonstrates that \(p66^{Shc} \) plays distinct roles at baseline and in response to an ischaemic insult in the heart and brain.

The surprising fact that both genetic deletion or transient silencing of \(p66^{Shc} \) led to increased infarct size after 30, but not after 45 and 60 min of ischaemia followed by 24 h reperfusion was supported by histological and biochemical data using troponin I as a marker. These solid observations are in contrast to previous ex vivo studies using isolated perfused hearts where \(p66^{Shc} \) deletion appeared to prevent from ischaemia–reperfusion injury.29 Thus, as in other experimental situations, it is obvious that results obtained in isolated organs and tissues mostly perfused by artificial solutions and devoid of physiological filling pressure and neurohumoral regulation cannot be extrapolated to the in vivo situation. Indeed, ex vivo and in vivo models of ischaemic cardiac injury differ substantially (including different times of reperfusion and involvement of systemic inflammation).23,28

As in the brain where \(p66^{Shc} \) is only expressed in the vasculature, but not in neurons and in hepatic ischaemic injury \(p66^{Shc} \) contributes to reperfusion injury, we here demonstrate a differential role of \(p66^{Shc} \) in the myocardium. Indeed, in endothelial cells, \(p66^{Shc} \) inhibits the expression and activity of eNOS and increases \(O_2^- \) production.31–34 However, the microcirculation of the heart (which is of importance during ischaemia) is mainly regulated by endothelium-derived hyperpolarizing factors rather than eNOS.17,35,36 Thus, the protective effects of \(p66^{Shc} \) against short-term ischaemia and reperfusion must be related to a specific role of the adaptor protein in the myocardium. Indeed, in the heart, ROS may also play a protective role in response to ischaemia.23,37 However, under our experimental conditions, \(p66^{Shc} \) silencing unlike in the murine aorta did not alter ROS production confirming a different regulatory role of \(p66^{Shc} \) in the heart compared with other organs.38 Thus, the protective role of \(p66^{Shc} \) in the myocardium must involve other pathways than those described in endothelial cells of conduit arteries. Indeed, the fact that protein levels of \(p66^{Shc} \) in the infarcted hearts from WT mice increase after 30 min of ischaemia followed by 12 or 24 h of reperfusion support our initial hypothesis of a protective role of \(p66^{Shc} \) in the myocardium.

Further, \(p66^{Shc} \) deficiency was not associated with any modification in both systemic and cardiac inflammation postinfarction. This again was surprising, since inflammation is considered a critical mediator of myocardial injury after ischaemia and reperfusion.5,6 However, our findings are in accordance with recent studies in animal models of acute myocardial infarction, in which the relevance of pro-inflammatory mediators (such as cytokines and chemokines) was questioned.39 Furthermore, no anti-inflammatory interventions have been shown to be clinically effective.40–42 It even has been suggested that inhibition of certain chemokines may favour scar formation, salvage of post-infarction remodelling and mouse survival.43 On the other hand, others found that inhibiting CXC chemokines early after ischaemia may reduce infarct size, but ineffective in preventing post-infarction heart failure.44–46 Be it as it may, \(p66^{Shc} \) does clearly not exert its protective effects via modulation of inflammatory responses or ROS activated during ischaemia and reperfusion.

Importantly, we found that \(p66^{Shc} \) is a critical regulator of cardiac protective pathways in mice. Indeed, \(p66^{Shc} \) deficiency was associated with a reduction in the phosphorylation levels of Akt at the Thr308 site and Stat3 at the Ser727 site after 5 min of reperfusion. Moreover, pharmacological inhibition of Stat3 activation through phosphorylation shortly before ischaemia onset further confirmed that Stat3 mediates the protective effects of \(p66^{Shc} \) during ischaemia–reperfusion. In line with that, activation of certain intracellular kinases, in particular those that are part of the RISK and SAFE pathways (i.e. Akt and Stat3), has been proposed as a preventive strategy against reperfusion injury.13,45 Interestingly, to be protective against ischaemia, Akt must not be fully activated (i.e. phosphorylated at both Thr308 and Ser473).46 This may explain why \(p66^{Shc} \), although it selectively phosphorylates Akt only at the Thr308 residue, was able to activate the RISK pathway in the ischaemic myocardium. \(p66^{Shc} \)-mediated phosphorylation of Stat3 at Ser727 is of importance for mitochondrial respiration of cardiomyocytes during ischaemia as phosphorylation of Stat3 at Ser727 promotes the transcriptional activity and mitochondrial translocation of this kinase.47 Data in mice and pigs confirmed the importance of Stat3 phosphorylation at Ser727 and Tyr705, respectively, for its mitochondrial localization and its effect on mitochondrial respiratory complex 1 and 2 as well as on mPTP.48,49 Our data are in accordance with those data further extending the role of Ser727 phosphorylation on mitochondrial permeability transition process by regulating mitochondrial PTP status.50 Finally, considering that other potential intracellular pathways were only marginally affected by \(p66^{Shc} \) deficiency, \(p66^{Shc} \) appears to act selectively on these intracellular pathways during ischaemia and reperfusion.

In line with these findings, we further show for the first time that genetic deletion or transient silencing of \(p66^{Shc} \) is associated with increased apoptosis post-infarction in response to short-term ischaemia and reperfusion. In line with these morphological findings, caspase-3 activity was increased and marked mitochondrial swelling was noted in infarcted hearts obtained from \(p66^{Shc} \)−/− when compared with WT animals. Of note, post-infarction cardiac apoptosis is a key event in adverse cardiac remodelling and heart failure during follow-up.50

Study limitations

First, extrapolations from mouse models to the human situation are difficult. Thus, although \(p66^{Shc} \) is upregulated in peripheral cells of patients with infarction further experiments in human myocardial tissue should be considered. Second, we acknowledge that infarct size observed in the present study was rather small compared with the infarct size found in humans, and accordingly small was the potential for protection. Third, the use of conventional knockout mice does not exclude effects of \(p66^{Shc} \) deletion in the other cell types than cardiomyocytes. Fourth, it is not clear yet whether further activation of \(p66^{Shc} \) over the basal level would be beneficial. To sort this out, the development of mice overexpressing \(p66^{Shc} \) in the myocardium would be essential. Fifth, although we were able to identify \(p66^{Shc} \) as a regulator of protective pro-survival RISK and SAFE pathways within ischaemic hearts, we did not identify all intermediate molecules involved. Finally, the present study also adds complexity to the use of this salvage pathways as a potential therapeutic target. Indeed, given the different effects of activation and silencing of
and bio-efficacy concerns for translating these results to human mouse models. Obviously, this complexity also raises safety concerns for translating these results to human mouse models. Additional research is needed to further clarify the role of p66Shc in other animal models of acute myocardial infarction, before speculating on human diseases.

Supplementary material

Supplementary material is available at European Heart Journal online.

Funding

This research was funded by the Swiss National Science Foundation (Grant #310030-135815 to T.F.; #310030-152912/1 to F.M.; #310039_152639/1 to F.M. and #310039_147017 to G.G.C.), by the EU FP7 (FP7-INNOVATION-1-HEALTH-F2-2013-620114, Atheros-Be to F.M.) and the Foundation for Cardiovascular Research—Zurich Heart House (to A.A. and G.G.C.), Zurich Switzerland.

Conflict of interest: None declared.

References