Systematic reviews and meta-analyses allow for a more transparent and objective appraisal of the evidence. They may decrease the number of false-negative results and prevent delays in the introduction of effective interventions into clinical practice. However, as for any other tool, their misuse can result in severely misleading results. In this article, we discuss the main steps that should be taken when conducting systematic reviews and meta-analyses, namely the preparation of a review protocol, identification of eligible trials, and data extraction, pooling of treatment effects across trials, investigation of potential reasons for differences in treatment effects across trials, and complete reporting of the review methods and findings. We also discuss common pitfalls that should be avoided, including the use of quality assessment tools to derive summary quality scores, pooling of data across trials as if they belonged to a single large trial, and inappropriate uses of meta-regression that could result in misleading estimates of treatment effects because of regression to the mean or the ecological fallacy. If conducted and reported properly, systematic reviews and meta-analyses will increase our understanding of the strengths and weaknesses of the available evidence, which may eventually facilitate clinical decision making.
biases, for instance, due to selective reporting of outcomes, data dredging, or non-publication. Different opportunities that allow registration of protocols of systematic reviews, such as PROSPERO, are currently available or underway.1–5

Literature search

Reviewers should aim at identifying as many eligible trials as possible. Searching a single electronic database will not be enough in most cases.6 For a systematic review of RCTs, reviewers should at a minimum conduct their search in Medline, Embase, and the Cochrane Collaboration’s Central Register of Controlled Trials. Subject-specific databases could also be used to increase the sensitivity of the search.7 Whenever possible, reviewers should also use alternative methods, including screening the reference list of eligible trials, searching clinical trial registers, searching conference proceedings, and contacting experts in the field. Chapter 6 of the Cochrane Handbook for Systematic Reviews of Interventions (freely available on http://handbook.cochrane.org/) provides guidance on how to design and conduct a proper literature search.

Search strategies for the identification of clinical studies of interventions commonly address three concepts: study design, interventions, and patient populations. Box 3 shows an example of a search strategy used to identify RCTs (study design, lines 1–20) comparing early generation drug-eluting stents with bare-metal stents (intervention, lines 21–28) in patients with ST-segment elevation myocardial infarction (population, lines 29–36). Developing a search strategy is iterative in nature. Good starting points for a search are the controlled indexing terms found in the thesaurus of major databases, such as the Medical Subject Headings tree in Medline and the Emtree in Embase, complemented by terms used for indexing articles already known to be eligible. Controlled terms will usually be complemented by free text words, which can be identified by screening title, abstract, keywords, and main body of text of already identified articles and by using lists of synonyms provided by major databases. As a rule of thumb based on the authors’ own experience, the proportion of trials included in the review should be roughly 1–5% of all references screened for inclusion. For example, in a recent systematic review on drug-eluting vs. bare-metal stents in patients with ST-elevation myocardial infarction, we expected ~10–15 trials and therefore anticipated to screen 300–600 references.8

In the first step, reviewers will typically screen titles and abstracts to exclude only clearly ineligible references. In the second step, the full text of remaining references will be examined to determine eligibility. To minimize bias and error, two reviewers should independently screen all references in duplicate, with disagreements resolved by discussion or by having a third reviewer making the final decision. If restricted resources do not allow for reference screening in duplicate, one reviewer may screen all the references, while the other reviewer screens a random sample.

Data extraction

Data extraction should always be performed in duplicate, with disagreements resolved by consensus or involvement of the third reviewer. To minimize potential errors, data should be extracted on a standardized and piloted extraction form accompanied by clear instructions on how each of the variables should be extracted.

Quality assessment

If the “raw material” is flawed then the conclusions of systematic reviews and meta-analyses cannot be trusted. Therefore, the
There is evidence indicating that inappropriate concealment of allocation, lack of blinding of patient, therapists, or outcome assessors, or analysis not according to the intention to treat principle may bias trial results.9–12 Box 4 provides definitions of components of methodological quality most relevant for cardiovascular trials. Summary scores derived from quality assessment scales, such as the frequently used Jadad scale,13 should not be used, neither as a criterion for inclusion in the meta-analysis nor for stratifying analyses, since results may depend considerably on the scale used to assess quality of trials.14,15 In a study of 25 different scales used to assess 17 trials of low-molecular-weight heparin vs. standard heparin for thromboprophylaxis, with some scales the relative risks of high-quality trials were close to one and not statistically significant, indicating that low-molecular-weight heparins were not superior to standard heparin, whereas low-quality trials showed significantly better protection with low-molecular-weight heparins. With other scales the opposite was the case: high-quality trials suggested that low-molecular-weight heparin were not superior to standard heparin, whereas low-quality trials found no significant difference.14 In addition, potentially important associations between components of methodological quality and estimates of treatment effects might be missed if associations cancel each other out because of opposite directions, or if they are diluted due to a large number of irrelevant components assessed.14,15,17 Rather, analyses should be stratified by individual components of methodological quality, such as concealment of allocation (see Stratified analyses and meta-regression). Meta-analyses should always be interpreted in the light of the methodological quality of included trials and the results of analyses stratified by components of methodological quality. The frequently recommended Cochrane Risk of Bias tool includes the most important components of methodological quality that should be addressed.18

Fixed- and random-effects models

Meta-analysis is simply a weighted average of estimates from different trials. It makes intuitive sense that small trials estimate treatment effects with higher precision if each trial is weighted equally, whereas large trials with a small number of events may provide imprecise estimates of treatment effects if each trial is weighted equally. Thus, the fixed-effects model assumes equal precision across trials and typically has a smaller number of degrees of freedom compared to the random-effects model. A fixed-effects model is appropriate if it can be assumed that the overall treatment effect is the same in all individual trials. In the random-effects model, the treatment effect varies across trials, and the results are interpreted as a weighted average of the treatment effects across trials. Both models have their drawbacks and assumptions need to be carefully validated.
effects less precisely than large trials. Therefore, statistical weights used in a meta-analysis take into account the statistical precision of each trial and give more weight to larger trials. Fixed-effect models assume that there is only one common treatment effect, which is estimated by each of the trials in the meta-analysis. The only source of variation to take into account under this assumption is the statistical imprecision of estimates of treatment effects from individual trials and the weights assigned to each trial correspond to the inverse of the variance of these estimates. Therefore, for trial i, the assigned weight will be $w = \left(\frac{1}{\text{var}_i} \right)$, with $\text{var}_i = \text{se}_i^2$, where var_i equals the observed within-trial variance and se_i the standard error of the estimated treatment effect in trial i. Random-effects models do not assume that there is one common treatment effect, but rather a series of different treatment effects, and each of the included trials may estimate a different treatment effect. Accordingly, two sources of variation need to be taken into account under this assumption: the already discussed statistical imprecision of individual trials as expressed by the variance within trials and the variance between trials, typically referred to as τ^2 (see Statistical heterogeneity between trials). For trial i, the assigned weight will then be $w = \left(\frac{1}{\text{var}_i + \tau^2} \right)$. The less variation between trials, the lower the between-trial variance τ^2, and the closer pooled estimate and corresponding confidence interval from random-effects models will correspond to those from fixed-effect models. In the extreme case of no variation between trials over and above of what would be expected by chance, τ^2 will be 0 and results from random- and fixed-effect models will be identical. Conversely, differences in pooled estimates and widths of confidence intervals will increase as between-trial variance τ^2 increases. A common misconception is that random-effects models will always derive more conservative estimates than fixed-effect models. Whenever τ^2 is different than null, random-effects model will indeed derive more conservative (i.e. wider) confidence intervals. However, since weights are more similar across trials of different sizes in random effects when compared with fixed-effect models, the pooled estimates from random-effects models are more affected by small-study effects, defined as biases due to publication bias or other methodological problems commonly associated to small studies (see Funnel plots). Accordingly, pooled estimates from fixed-effect models will be more conservative, i.e. closer to the line of no difference, in the presence of small-study effects. Figure 2 presents an extreme example of a random-effects meta-analysis comparing intravenous magnesium with placebo in patients with acute myocardial infarction, which indicated a large effect of magnesium on overall mortality (relative risk 0.53, 95% confidence interval 0.38–0.75, left) despite the inclusion of the null result found in the mega-trial ISIS-4, which included more than four times as many patients as all previous trials combined. These results could be entirely explained by large benefits erroneously found in small trials in the presence of moderate-to-large heterogeneity (see Statistical heterogeneity). An inspection of the size of the squares and the quantification of statistical weights indicates that the small and moderately sized trials all received unduly large weights, while the weight of ISIS-4 was a mere 17.7%. Conversely, a fixed-effect model, which gave very little weight to the small and moderately sized trials, but 92.8% to ISIS-4, yielded a clear-cut null-result (relative risk 1.01, 95% confidence interval 0.95–1.06). This example shows that reviewers should not mechanically decide to give preference to a random-effects model if moderate-to-large

![Figure 2](https://academic.oup.com/eurheartj/article-abstract/35/47/3336/2293217)

Figure 2 Random- and fixed-effect meta-analyses comparing the effect of intravenous magnesium with placebo on overall mortality in patients with acute myocardial infarction. RR: risk ratio; CI: confidence interval. A risk ratio below 1 indicates that intravenous magnesium is better than placebo.
statistical heterogeneity is found, as is unfortunately the case in many meta-analyses. Such an approach can yield completely misleading results, particularly if reviewers do not carefully explore sources of variation between trials in estimates of treatment effects (see Stratified analyses and funnel plots). Rather, reviewers should decide a priori which model to use in view of the considerations above, with the understanding that random-effects models will only be truly more conservative than fixed-effect models if statistical heterogeneity is present and small-study effects absent. On a related note, different methods used to conduct random-effects meta-analysis may yield pooled estimates of different magnitude and precision. The DerSimonian & Laird estimator,22 the most commonly used method for conducting random-effects meta-analysis, does not take into consideration the uncertainty around τ^2 estimation and may yield biased estimates with spuriously high precision. A recently published article discusses other approaches that could be used instead.23

Pooling of binary data

Binary outcomes, as frequently reported in cardiology, should be expressed as estimates of the relative risk, such as risk ratios, rate ratios, hazard ratios, or odds ratios. To be amenable for pooling, these estimates need to be log-transformed using the natural logarithm so that their behaviour is additive and approximately follows a normal distribution. An unfortunate error easily made when using current software packages is to use untransformed estimates for meta-analysis, for example, the risk ratio rather than the natural logarithm of the risk ratio, in combination with appropriately calculated standard errors. Reviewers should be careful with combining risk differences in meta-analysis, since these are sensitive to variations of the baseline risk.24,25 In most clinical situations, it is reasonable, for example, to assume that an intervention, which approximately halves the risk of myocardial infarction in a trial, which included a high-risk population with an annual baseline risk of myocardial infarction of 10% in the control group, also halves the risk in a trial, which included an average-risk population with a baseline risk of 1%. In both trials, the relative risk will be ~ 0.5. Conversely, the risk difference will be 5% in the first, but only 0.5% in the second trial. Obviously, pooling risk differences of these two trials will introduce statistical heterogeneity, whereas pooling relative risks will not. Accordingly, numbers needed to treat, or numbers needed to harm, cannot be calculated directly in a meta-analysis, but need to be derived indirectly by applying the pooled relative risk reduction found in the meta-analysis to the baseline risk relevant to specific groups of patients.24

Example of inappropriate method for pooling of trials

It may be tempting for some reviewers to simply sum up across trials the number of events and the number of patients within experimental and control groups as if they belonged to a single large trial, and thereafter calculate a treatment effect estimate with 95% confidence interval. Results of such an exercise will only be approximately correct and correspond to results from a fixed-effect meta-analysis if all included trials used 1 : 1 randomization so that the numbers of patients allocated to experimental and control group in each trial were near identical. We advise against using this approach, since it can yield seriously misleading results if some of the included trials had unequal group sizes due to randomization ratios other than 1 : 1.24,27 Reviewers should instead first calculate treatment effect estimates and respective standard errors for each single trial and subsequently conduct a meta-analysis to derive an overall treatment effect estimate and its 95% confidence interval as described above.

Meta-analysis using individual patient data

Individual patient data (IPD) meta-analysis refers to the meta-analysis of raw data of each individual patient from all trials included in the review. The observations in a dataset used in an IPD meta-analysis consists of individuals (or patients), whereas the dataset used in an aggregate level meta-analysis consists of averaged treatment effect estimates, such as odds ratios or differences in means. One of the main advantages is the possibility to stratify analyses according to patient characteristics, which cannot be properly done on an aggregate level because of the ecological fallacy (see Stratified analyses and meta-regression).28 A detailed discussion of IPD meta-analysis is beyond the scope of the present tutorial; further information can be found elsewhere.29,30

Statistical heterogeneity

Statistical heterogeneity is defined as the variation of treatment effect estimates between trials over and above of the variation expected by chance alone. Heterogeneity will occur if there are characteristics of patients, co-interventions or trials that act as effect modifiers and influence treatment effects measured on a relative risk scale (see Pooling of trials), and if these characteristics are unequally distributed across trials. The larger the degree of unexplained heterogeneity, the less confidence reviewers and readers should have into a meta-analysis, irrespective of the model used (see Stratified analyses, meta-regression, and funnel plots for ways of exploring sources of heterogeneity).31

The Q-statistic traditionally used to quantify heterogeneity is difficult to interpret as it depends on the number of trials included in the meta-analysis and on the precision of these trials.32 The currently most frequently used metrics are I^2 and τ^2. I^2 ranges from 0 to 100% and quantifies the percentage of the variation of treatment effect estimates between trials due to heterogeneity rather than the play of chance. An I^2 of 40% indicates, for example, that 40% of the observed variation between estimated treatment effects is due to real heterogeneity, while 60% is due to chance. I^2 should be interpreted with care since it will be influenced by the precision of the trials included in the meta-analysis: as the precision of trials increases so does the I^2, irrespective of variation in estimates of treatment effects.32 τ^2 is an estimate of between-trial variance measured on the same scale as the within-trial variance var = se^2 referred to above. Its interpretation will therefore depend on the type of estimate used. Figure 3 presents guidance for the interpretation of I^2 and τ^2.33
Systematic reviews and meta-analyses of randomized trials

Forest plots

As in any other area of quantitative research, visual inspection of the data used for the analysis is paramount. A forest plot provides at a glance a complete visual summary of results from individual trials included in the meta-analysis. Figure 4A and B gives examples of two forest plots with 11 trials each. The squares in the plots represent the risk ratios estimated in each of the 11 trials, with the area of each square proportional to the trial’s weight in the meta-analysis. The vertical solid line at 1 represents the line of no difference between experimental and control group. Squares to the left of the line of no difference indicate that the intervention is better than the control intervention, squares to the right the opposite. The horizontal lines intersecting the squares represent the 95% confidence intervals of the point estimate of individual trials. The pooled estimate is plotted as a diamond, with the midpoints and confidence intervals of the point estimate of individual trials. The horizontal lines intersecting the squares represent the 95% confidence intervals of all trials included in the meta-analysis.

A visual inspection of treatment effects displayed in a forest plot is complementary to the formal quantification of heterogeneity described above and often considerably more informative. Figure 4A (left) presents a homogeneous random-effects meta-analysis of 11 trials to determine the effect of streptokinase on overall mortality in patients with acute myocardial infarction. The major feature of this forest plot is that 95% confidence intervals of all trials widely overlap, indicating that the risk ratios of all trials are compatible with each other, and that 95% confidence intervals of all trials include the pooled estimate shown as a dashed red line. The residual variation in estimated treatment effects, with three trials suggesting a reduction of risk ratios, rate ratios, hazard ratios, or odds ratios), while interpretation will be different for risk differences and for continuous outcomes measured on various scales.

Figure 3 Interpretation of statistical heterogeneity. The interpretation of τ^2 only holds approximately for estimates of the relative risk (risk ratios, rate ratios, hazard ratios, or odds ratios), while interpretation will be different for risk differences and for continuous outcomes measured on various scales.

Stratified analyses and meta-regression

Stratified analyses and meta-regression aim at determining whether estimates of treatment effects are associated with methodological or clinical characteristics of the trials included in the meta-analysis. The higher statistical heterogeneity between trials the more important these analyses become. A meta-analysis that ignores moderate-to-large extents of heterogeneity is clinically misleading and scientifically naive. Even if there is no or little statistical heterogeneity between trials, stratified analyses can yield valuable insights into clinical or methodological sources of variation between trials.

Figure 5 shows the results of stratified analyses performed in a meta-analysis comparing the effect of drug-eluting stents vs. bare-metal stents on rates of target vessel revascularization in patients with ST-segment elevation myocardial infarction. The analysis was stratified by four pre-specified trial characteristics: concealment of allocation, blind adjudication of events, analysis according to the intention-to-treat principle (see Box 4), and trial size. For each of the characteristics, trials of higher methodological quality, such as those with adequate concealment of allocation, were pooled separately from trials of lower methodological quality or unclear reporting of the methodological item, using the same model as for the main meta-analysis. All four stratified analyses are accompanied by a P-value for interaction, which determines whether the differences between strata may have occurred by chance alone or whether there is evidence for effect modification, with an interaction between-trial characteristic and estimate of treatment effect. For the analysis stratified by concealment of allocation, for example, the treatment effect estimated on a risk ratio scale was 0.58 in trials with adequate concealment and 0.47 in trials with inadequate concealment or unclear reporting, 95% confidence intervals of estimates overlap considerably and the non-significant P-value for interaction indicates that the probability that the observed difference between strata or an even larger difference will have occurred by chance is 18%. Conversely, in the analysis stratified by trial size, the risk ratio was 0.57 in large trials with 300 patients or more, but 0.36 in smaller trials. The overlap of 95% confidence intervals was small and the P-value for interaction significant ($P < 0.05$).

P-values for interaction are typically derived from random-effects meta-regression, which takes into account both within-trial variance of treatment effects and the residual between-trial heterogeneity, which is not explained by the covariate in the model. The meta-regression models used in Figure 5 were all univariable, including only one binary trial characteristic as independent variable, as referred to above. The model also allows the inclusion of continuous
Figure 4 Forest plots. (A) (left) A homogeneous random-effects meta-analysis of 11 trials to determine the effect of streptokinase on overall mortality in patients with acute myocardial infarction.33 (B) (right) A moderately heterogeneous random-effects meta-analysis of 11 trials to determine the benefits of acetylcysteine in reducing contrast-induced nephropathy in patients undergoing angiography.34 RR: risk ratio; CI: confidence interval; n: number or events; N: total number of patients.
Figure 5 Stratified analysis by characteristics of trials (adapted from Kalesan et al.). CI: confidence interval. A risk ratio below 1 indicates that drug-eluting stents are better than bare-metal stents.

Figure 6 Funnel plots for definite stent thrombosis (A) and target vessel revascularization (B) with log of the risk ratio of individual trials on the x-axis scattered against the corresponding standard error on the y-axis. The larger a trial, the more events accumulated, the smaller the standard error as a measure of statistical precision. In the absence of bias, the scatter of trials should have the shape of an inverted funnel, with large trials scattering little at the top and small trials scattering considerably at the bottom. If the funnel plot is asymmetrical, this suggests the presence of small-study effects, suggesting that methodological problems and selective reporting of outcomes in small trials, and publication bias may have resulted in an overestimation of effects. Red solid lines are prediction lines from univariable meta-regression models with standard error as explanatory variable and red dashed lines are corresponding 95% prediction intervals. The more the prediction line deviates from the vertical line, the more pronounced is asymmetry. P-values are from the Harbord test (adapted from Kalesan et al.).
covariates. However, it is problematic to include patient characteristics aggregated at trial level, such as mean age or the percentage of females, in the model, since this may produce wrong results due to the ecological fallacy.\(^\text{38,39}\) Real associations observed at patient level may disappear or even be inversed at trial level, or spurious associations may be found that cannot be verified when analysing IPD.

Meta-regression is frequently used to determine whether estimated treatment effects on a relative risk scale are associated with the underlying baseline risk as measured by the event rate observed in the control group. From a clinical viewpoint, baseline risk is an appealing summary measure of the spectrum of disease severity, comorbid conditions, and risk factors observed in the different patient populations and/or clinical settings of included trials. Unfortunately, this approach is flawed and likely to produce misleading results in most situations.\(^\text{39,40}\) When calculating an estimate of the relative risk, the control group event rate is included in the denominator of the estimate. As a special case of regression towards the mean,\(^\text{41}\) the relative risk must therefore be associated with the control group event rate: if random variation results in a high control group event rate, then a treatment benefit will become more pronounced, if chance results in a low control group event rate then the treatment benefit will become less pronounced.\(^\text{40}\) In the absence of any true association with the predicted risk of a future event in individual patients, meta-regression models, which determine the association of treatment effects with control group event rates, will therefore always find that an observed benefit will be more pronounced in trials with high control group event rates when compared with trials with low control group event rates—a self-fulfilling prophecy. There are no straightforward solutions to determine whether treatment effects depend on the patients’ baseline risk using aggregate data at a trial level. Only an analysis of IPD with interaction terms between treatment effect and risk scores, such as the logistic Euroscore,\(^\text{12}\) to predict the risk of future events in individual patients will provide clinically meaningful results.\(^\text{10}\)

Funnel plots

The funnel plot is a scatter plot of treatment effects against standard error as a measure of statistical precision. It is expected that treatment effect estimates from smaller trials will scatter more widely in this graph than those of larger trials due to chance. Thus, in the absence of biases, we expect these plots to have the symmetrical shape of an inverted funnel.\(^\text{33}\) Deviations from this shape are indicative of small-study effects: larger treatment benefits observed in smaller trials are most likely due to publication bias, selective reporting of outcomes, and other biases commonly seen in small studies with methodological limitations, or—rather exceptionally—due to real clinical heterogeneity with more targeted patient selection or better implementation of interventions in small when compared to large trials.\(^\text{43}\) Meta-regression models can be used to test the funnel plot asymmetry.\(^\text{44}\) Figure 6 shows examples of symmetrical and asymmetrical funnel plots with 10 values of meta-regression tests for asymmetry: in a meta-analysis comparing drug-eluting stents with bare-metal stents in patients with ST-segment elevation myocardial infarction the funnel plot was symmetrical for definite stent thrombosis (Figure 6A, left), but clearly asymmetrical for the effectiveness outcome of target vessel revascularization (Figure 6B, right).\(^\text{38}\) In this case, small-study effects such as detection and attrition bias (see Box 4)\(^\text{12}\) likely distorted results for revascularization as a major clinical outcome, but not for stent thrombosis as an infrequently occurring safety outcome of secondary importance.

Complete reporting

Obviously, authors should report all relevant steps taken in their systematic review and meta-analysis.\(^\text{45}\) Transparent and complete reporting is crucial so that readers can understand the overall quality of the review, properly interpret results, and replicate or update the review. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement is a reporting guideline for systematic reviews and meta-analyses evaluating health-care interventions.\(^\text{4}\) Review authors should try to adhere as closely as possible to this guideline when preparing their manuscript.

Conclusions

Systematic reviews and meta-analyses allow for a more transparent and objective appraisal of the evidence, which may eventually facilitate clinical decision making. They may decrease the number of false-negative results and prevent delays in the introduction of effective interventions into clinical practice. As for any other tool, their misuse can result in severely misleading results. If conducted and reported properly in accordance with the guidance provided in this tutorial, systematic reviews and meta-analyses will increase our understanding of the strengths and weaknesses of the available evidence.

Funding

This article was supported by intramural funds from the Institute of Social and Preventive Medicine, University of Bern, Switzerland.

Conflict of interest: CTU Bern, which is part of the University of Bern, has a staff policy of not accepting honoraria or consultancy fees. However, CTU Bern is involved in design, conduct, or analysis of clinical studies funded by Abbott Vascular, Medtronic, Biotronik, Boehringer Ingelheim, Ely Lilly, Exelixis, Geron, Gilead Sciences, Nestlé, Novartis, Novo Nordisk, Padma, Roche, Schering-Plough, St Jude Medical, and Swiss Cardio Technologies. PJ is an unpaid steering committee or statistical executive committee member of trials funded by Abbott Vascular, Biosensors, Medtronic and Johnson & Johnson. BRDC has no conflicts of interest to declare.

References

Box 4: Reporting biases: A number of biases can affect systematic reviews and meta-analyses. Reporting bias is the differential reporting of studies or of findings within studies. The best way to reduce reporting bias is to report systematically and completely. This is achieved through the use of the PRISMA statement and related checklists. Reporting biases can also be a result of other biases, such as publication bias, as well as other methodological issues, such as the quality of the evidence. Reporting biases can be identified through the use of funnel plots, funnel asymmetry, and other statistical methods. Reporting biases can also be reduced through the use of open and transparent reporting, and the use of checklists to assess the quality of the evidence.